cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A172219 Number of ways to place 4 nonattacking nightriders on a 4 X n board.

Original entry on oeis.org

1, 16, 84, 412, 1126, 2760, 5739, 10982, 19695, 33068, 52801, 80638, 118731, 169368, 235135, 318890, 423733, 553028, 710389, 899690, 1125059, 1390880, 1701793, 2062694, 2478735, 2955324, 3498125, 4113058, 4806299, 5584280, 6453689
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 29 2010

Keywords

Comments

A nightrider is a fairy chess piece that can move (proportionate to how a knight moves) in any direction.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-(2 x^21 - 6 x^20 + 10 x^19 - 14 x^18 + 22 x^17 - 30 x^16 - 26 x^15 + 162 x^14 - 272 x^13 + 364 x^12 - 466 x^11 + 526 x^10 - 303 x^9 - 207 x^8 + 603 x^7 - 517 x^6 + 489 x^5 - 249 x^4 + 142 x^3 + 14 x^2 + 11 x + 1) / (x - 1)^5, {x, 0, 50}], x] (* Vincenzo Librandi, May 28 2013 *)

Formula

a(n) = (32n^4 - 432n^3 + 3190n^2 - 13323n + 25530)/3, n>=18.
G.f.: -x * (2*x^21 -6*x^20 +10*x^19 -14*x^18 +22*x^17 -30*x^16 -26*x^15 +162*x^14 -272*x^13 +364*x^12 -466*x^11 +526*x^10 -303*x^9 -207*x^8 +603*x^7 -517*x^6 +489*x^5 -249*x^4 +142*x^3 +14*x^2 +11*x +1) / (x-1)^5. - Vaclav Kotesovec, Mar 25 2010

A172220 Number of ways to place 5 nonattacking nightriders on a 5 X n board.

Original entry on oeis.org

1, 28, 157, 1248, 4650, 15162, 37988, 86958, 181423, 351708, 648441, 1127392, 1874194, 2988466, 4602096, 6870240, 9983347, 14163972, 19672403, 26812260, 35929480, 47418482, 61723238, 79341720, 100828175, 126796852, 157924785
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 29 2010

Keywords

Comments

A nightrider is a fairy chess piece that can move (proportionate to how a knight moves) in any direction.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(2 x^36 - 8 x^35 + 16 x^34 - 24 x^33 + 38 x^32 - 64 x^31 + 104 x^30 - 156 x^29 + 54 x^28 + 380 x^27 - 944 x^26 + 1452 x^25 - 2172 x^24 + 3376 x^23 - 5094 x^22 + 7180 x^21 - 6614 x^20 - 28 x^19 + 8814 x^18 - 15212 x^17 + 21026 x^16 - 27284 x^15 + 34160 x^14 - 40598 x^13 + 39882 x^12 - 24490 x^11 + 3876 x^10 + 8558 x^9 - 11326 x^8 + 11266 x^7 -6006 x^6 + 3256 x^5 - 1028 x^4 + 706 x^3 + 4 x^2 + 22 x + 1) / (x - 1)^6, {x, 0, 40}], x] (* Vincenzo Librandi, May 28 2013 *)

Formula

a(n) = (625n^5-15250n^4+197915n^3-1588634n^2+7645896n-17283552)/24, n>=32.
G.f.: x * (2*x^36 -8*x^35 +16*x^34 -24*x^33 +38*x^32 -64*x^31 +104*x^30 -156*x^29 +54*x^28 +380*x^27 -944*x^26 +1452*x^25 -2172*x^24 +3376*x^23 -5094*x^22 +7180*x^21 -6614*x^20 -28*x^19 +8814*x^18 -15212*x^17 +21026*x^16 -27284*x^15 +34160*x^14 -40598*x^13 +39882*x^12 -24490*x^11 +3876*x^10 +8558*x^9 -11326*x^8 +11266*x^7 -6006*x^6 +3256*x^5 -1028*x^4 +706*x^3 +4*x^2 +22*x +1) / (x-1)^6. - Vaclav Kotesovec, Mar 25 2010
Showing 1-2 of 2 results.