cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172249 Triangle, read by rows, given by [0,1/3,-1/3,0,0,0,0,0,0,0,...] DELTA [3,-1/3,1/3,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 3, 0, 1, 8, 0, 0, 6, 21, 0, 0, 1, 25, 55, 0, 0, 0, 9, 90, 144, 0, 0, 0, 1, 51, 300, 377, 0, 0, 0, 0, 12, 234, 954, 987, 0, 0, 0, 0, 1, 86, 951, 2939, 2584, 0, 0, 0, 0, 0, 15, 480, 3573, 8850, 6765, 0, 0, 0, 0, 0, 1, 130, 2305, 12707, 26195, 17711, 0, 0, 0, 0, 0, 0, 18, 855
Offset: 0

Views

Author

Philippe Deléham, Jan 29 2010

Keywords

Comments

Diagonal sums : |A077897|. Column sums : A001353 .

Examples

			Triangle begins :
1,
0,3,
0,1,8,
0,0,6,21,
0,0,1,25,55,
0,0,0,9,90,144,
0,0,0,1,51,300,377,
0,0,0,0,12,234,954,987,
0,0,0,0,1,86,951,2939,2584,
0,0,0,0,0,15,480,3573,8850,6765,
0,0,0,0,0,1,130,2305,12707,26195,17711,
		

Crossrefs

Programs

  • Maxima
    T(n,k):=2*sum((j*binomial(n+j,2*n-2*k+2*j)*binomial(n-k+j,j))/(n+j),j,1,n+k); /* Vladimir Kruchinin_, Oct 28 2020 */

Formula

T(n,k) = 3*T(n-1,k-1) + T(n-2,k-1) - T(n-2,k-2), T(0,0)=1, T(n,k) = 0 if k>n or if k<0.
Sum_{k, 0<=k<=n} T(n,k)= 3^n = A000244(n) (row sums).
G.f.: 1/(1-3*x*y-x^2*y+x^2*y^2). - R. J. Mathar, Aug 11 2015
T(n,k) = 2*Sum_{j=1..n+k} j*C(n+j,2*n-2*k+2*j)*C(n-k+j,j)/(n+j), T(0,0)=1. - Vladimir Kruchinin, Oct 28 2020