cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172255 Partial sums of the Fermat pseudoprimes to base 2, A001567.

Original entry on oeis.org

341, 902, 1547, 2652, 4039, 5768, 7673, 9720, 12185, 14886, 17707, 20984, 25017, 29386, 33757, 38438, 43899, 50500, 58457, 66778, 75259, 84170, 94431, 105016, 116321, 129122, 142863, 156610, 170591, 185082, 200791, 216632, 233337, 252042
Offset: 1

Views

Author

Jonathan Vos Post, Jan 29 2010

Keywords

Comments

The subsequence of pseudoprimes in this sequence begins 341; the next term exceeds a(10000) if it exists. - Charles R Greathouse IV, Aug 22 2012
The subsequence of primes in the sequence begins 7673, 17707, 33757, 270763, 484621.

Examples

			a(15) = 341 + 561 + 645 + 1105 + 1387 + 1729 + 1905 + 2047 + 2465 + 2701 + 2821 + 3277 + 4033 + 4369 + 4371 = 33757 is prime.
		

Crossrefs

Programs

  • PARI
    sums(v)=my(s); vector(#v,i, s+=v[i])
    sums(select(n->Mod(2, n)^n==2 & !isprime(n), vector(10^5,n,2*n+1))) \\ Charles R Greathouse IV, Jul 09 2015

Formula

a(n) = Sum_{i=1..n, odd composite numbers n such that 2^(n-1) == 1 mod n}.