A172255 Partial sums of the Fermat pseudoprimes to base 2, A001567.
341, 902, 1547, 2652, 4039, 5768, 7673, 9720, 12185, 14886, 17707, 20984, 25017, 29386, 33757, 38438, 43899, 50500, 58457, 66778, 75259, 84170, 94431, 105016, 116321, 129122, 142863, 156610, 170591, 185082, 200791, 216632, 233337, 252042
Offset: 1
Examples
a(15) = 341 + 561 + 645 + 1105 + 1387 + 1729 + 1905 + 2047 + 2465 + 2701 + 2821 + 3277 + 4033 + 4369 + 4371 = 33757 is prime.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
PARI
sums(v)=my(s); vector(#v,i, s+=v[i]) sums(select(n->Mod(2, n)^n==2 & !isprime(n), vector(10^5,n,2*n+1))) \\ Charles R Greathouse IV, Jul 09 2015
Formula
a(n) = Sum_{i=1..n, odd composite numbers n such that 2^(n-1) == 1 mod n}.
Comments