A172345 Triangle t(n,k) read by rows: fibonomial ratios c(n)/(c(k)*c(n-k)) where c are partial products of a generalized Fibonacci sequence with multiplier m=7.
1, 1, 1, 1, 7, 1, 1, 50, 50, 1, 1, 357, 2550, 357, 1, 1, 2549, 129999, 129999, 2549, 1, 1, 18200, 6627400, 47319636, 6627400, 18200, 1, 1, 129949, 337867400, 17224480052, 17224480052, 337867400, 129949, 1, 1, 927843, 17224610001, 6269758040364
Offset: 0
Examples
1; 1, 1; 1, 7, 1; 1, 50, 50, 1; 1, 357, 2550, 357, 1; 1, 2549, 129999, 129999, 2549, 1; 1, 18200, 6627400, 47319636, 6627400, 18200, 1; 1, 129949, 337867400, 17224480052, 17224480052, 337867400, 129949, 1; 1, 927843, 17224610001, 6269758040364, 44766423655148, 6269758040364, 17224610001, 927843, 1;
Programs
-
Mathematica
Clear[f, c, a, t]; f[0, a_] := 0; f[1, a_] := 1; f[n_, a_] := f[n, a] = a*f[n - 1, a] + f[n - 2, a]; c[n_, a_] := If[n == 0, 1, Product[f[i, a], {i, 1, n}]]; t[n_, m_, a_] := c[n, a]/(c[m, a]*c[n - m, a]); Table[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}], {a, 1, 10}]; Table[Flatten[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}]], {a, 1, 10}]
Comments