A172346 Triangle t(n,k) read by rows: fibonomial ratios c(n)/(c(k)*c(n-k)) where c are partial products of a generalized Fibonacci sequence with multiplier m=8.
1, 1, 1, 1, 8, 1, 1, 65, 65, 1, 1, 528, 4290, 528, 1, 1, 4289, 283074, 283074, 4289, 1, 1, 34840, 18678595, 151727664, 18678595, 34840, 1, 1, 283009, 1232504195, 81326315267, 81326315267, 1232504195, 283009, 1, 1, 2298912, 81326598276
Offset: 0
Examples
1; 1, 1; 1, 8, 1; 1, 65, 65, 1; 1, 528, 4290, 528, 1; 1, 4289, 283074, 283074, 4289, 1; 1, 34840, 18678595, 151727664, 18678595, 34840, 1; 1, 283009, 1232504195, 81326315267, 81326315267, 1232504195, 283009, 1; 1, 2298912, 81326598276, 43591056675936, 354094776672518, 43591056675936, 81326598276, 2298912, 1;
Programs
-
Mathematica
Clear[f, c, a, t]; f[0, a_] := 0; f[1, a_] := 1; f[n_, a_] := f[n, a] = a*f[n - 1, a] + f[n - 2, a]; c[n_, a_] := If[n == 0, 1, Product[f[i, a], {i, 1, n}]]; t[n_, m_, a_] := c[n, a]/(c[m, a]*c[n - m, a]); Table[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}], {a, 1, 10}]; Table[Flatten[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}]], {a, 1, 10}]
Comments