A172347 Triangle t(n,k) read by rows: fibonomial ratios c(n)/(c(k)*c(n-k)) where c are partial products of a generalized Fibonacci sequence with multiplier m=3.
1, 1, 1, 1, 1, 1, 1, 4, 4, 1, 1, 7, 28, 7, 1, 1, 19, 133, 133, 19, 1, 1, 40, 760, 1330, 760, 40, 1, 1, 97, 3880, 18430, 18430, 3880, 97, 1, 1, 217, 21049, 210490, 571330, 210490, 21049, 217, 1, 1, 508, 110236, 2673223, 15275560, 15275560, 2673223, 110236, 508
Offset: 0
Examples
1; 1, 1; 1, 1, 1; 1, 4, 4, 1; 1, 7, 28, 7, 1; 1, 19, 133, 133, 19, 1; 1, 40, 760, 1330, 760, 40, 1; 1, 97, 3880, 18430, 18430, 3880, 97, 1; 1, 217, 21049, 210490, 571330, 210490, 21049, 217, 1; 1, 508, 110236, 2673223, 15275560, 15275560, 2673223, 110236, 508, 1; 1, 1159, 588772, 31940881, 442609351, 931809160, 442609351, 31940881, 588772, 1159, 1;
Programs
-
Mathematica
Clear[f, c, a, t]; f[0, a_] := 0; f[1, a_] := 1; f[n_, a_] := f[n, a] = f[n - 1, a] + a*f[n - 2, a]; c[n_, a_] := If[n == 0, 1, Product[f[i, a], {i, 1, n}]]; t[n_, m_, a_] := c[n, a]/(c[m, a]*c[n - m, a]); Table[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}], {a, 1, 10}]; Table[Flatten[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}]], {a, 1, 10}]
Comments