cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172348 Index k of the semiprime A001358(k) = prime(n) * prime(n+1).

Original entry on oeis.org

2, 6, 13, 26, 48, 75, 103, 135, 199, 270, 338, 443, 508, 581, 706, 878, 1001, 1124, 1305, 1413, 1565, 1764, 1978, 2299, 2571, 2724, 2886, 3052, 3213, 3710, 4259, 4581, 4859, 5259, 5668, 5954, 6409, 6797, 7184, 7696, 8029, 8515, 9062, 9325, 9608, 10246, 11444
Offset: 1

Views

Author

Ulrich Krug (leuchtfeuer37(AT)gmx.de), Feb 01 2010

Keywords

Comments

The positions of products of 2 successive primes in A001358. - Juri-Stepan Gerasimov, Apr 14 2010

Examples

			n=1: 6 = 2 * 3 = prime(1) * prime(2) = semiprime(2). Therefore a(1) = 2.
n=2: 15 = 3 * 5 = prime(2) * prime(3) = semiprime(6). Therefore a(2) = 6.
n=3: 35 = 5 * 7 = prime(3) * prime(4) = semiprime(13). Therefore a(3) = 13.
		

References

  • Edmund Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Band I, B. G. Teubner, Leipzig u. Berlin, 1909.
  • Derrick H. Lehmer, Guide to Tables in the Theory of Numbers Washington, D.C. 1941.

Crossrefs

Programs

  • Maple
    A001358 := proc(n) option remember; local a; if n = 1 then 4; else for a from procname(n-1)+1 do if numtheory[bigomega](a)= 2 then return a; end if; end do ; end if; end proc:
    A006094 := proc(n) ithprime(n)*ithprime(n+1) ; end proc:
    A172348 := proc(n) pp := A006094(n) ; for k from 1 do if A001358(k) = pp then return k; end if; end do ; end proc:
    seq(A172348(n),n=1..70) ; # R. J. Mathar, Feb 09 2010
  • Mathematica
    semiPrimePi[n_] := Sum[ PrimePi[n/Prime@ i] - i + 1, {i, PrimePi@ Sqrt@ n}];  semiPrimePi@# & /@ Table[ Prime[n] Prime[n + 1], {n, 47}] (* Robert G. Wilson v, Feb 02 2013 *)
    nn=50000;Flatten[Module[{sp=Select[Range[nn+PrimePi[nn]],PrimeOmega[#] == 2&]},Table[ Position[sp,Prime[n]Prime[n+1]],{n,PrimePi[nn]}]]] (* Harvey P. Dale, Sep 07 2013 *)

Formula

a(n) = {k: A001358(k) = A006094(n)}.

Extensions

Entries checked by R. J. Mathar, Feb 09 2010