A172349 Triangle t(n,k) read by rows: fibonomial ratios c(n)/(c(k)*c(n-k)) where c are partial products of a generalized Fibonacci sequence with multiplier m=4.
1, 1, 1, 1, 1, 1, 1, 5, 5, 1, 1, 9, 45, 9, 1, 1, 29, 261, 261, 29, 1, 1, 65, 1885, 3393, 1885, 65, 1, 1, 181, 11765, 68237, 68237, 11765, 181, 1, 1, 441, 79821, 1037673, 3343613, 1037673, 79821, 441, 1, 1, 1165, 513765, 18598293, 134321005, 134321005
Offset: 0
Examples
1; 1, 1; 1, 1, 1; 1, 5, 5, 1; 1, 9, 45, 9, 1; 1, 29, 261, 261, 29, 1; 1, 65, 1885, 3393, 1885, 65, 1; 1, 181, 11765, 68237, 68237, 11765, 181, 1; 1, 441, 79821, 1037673, 3343613, 1037673, 79821, 441, 1; 1, 1165, 513765, 18598293, 134321005, 134321005, 18598293, 513765, 1165, 1; 1, 2929, 3412285, 300963537, 6052711133, 13566421505, 6052711133, 300963537, 3412285, 2929, 1;
Programs
-
Mathematica
Clear[f, c, a, t]; f[0, a_] := 0; f[1, a_] := 1; f[n_, a_] := f[n, a] = f[n - 1, a] + a*f[n - 2, a]; c[n_, a_] := If[n == 0, 1, Product[f[i, a], {i, 1, n}]]; t[n_, m_, a_] := c[n, a]/(c[m, a]*c[n - m, a]); Table[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}], {a, 1, 10}]; Table[Flatten[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}]], {a, 1, 10}]
Comments