A172350 Triangle t(n,k) read by rows: fibonomial ratios c(n)/(c(k)*c(n-k)) where c are partial products of a generalized Fibonacci sequence with multiplier m=5.
1, 1, 1, 1, 1, 1, 1, 6, 6, 1, 1, 11, 66, 11, 1, 1, 41, 451, 451, 41, 1, 1, 96, 3936, 7216, 3936, 96, 1, 1, 301, 28896, 197456, 197456, 28896, 301, 1, 1, 781, 235081, 3761296, 14019376, 3761296, 235081, 781, 1, 1, 2286, 1785366, 89565861, 781665696
Offset: 0
Examples
1; 1, 1; 1, 1, 1; 1, 6, 6, 1; 1, 11, 66, 11, 1; 1, 41, 451, 451, 41, 1; 1, 96, 3936, 7216, 3936, 96, 1; 1, 301, 28896, 197456, 197456, 28896, 301, 1; 1, 781, 235081, 3761296, 14019376, 3761296, 235081, 781, 1; 1, 2286, 1785366, 89565861, 781665696, 781665696, 89565861, 1785366, 2286, 1; 1, 6191, 14152626, 1842200151, 50409295041, 118031520096, 50409295041, 1842200151, 14152626, 6191, 1;
Programs
-
Mathematica
Clear[f, c, a, t]; f[0, a_] := 0; f[1, a_] := 1; f[n_, a_] := f[n, a] = f[n - 1, a] + a*f[n - 2, a]; c[n_, a_] := If[n == 0, 1, Product[f[i, a], {i, 1, n}]]; t[n_, m_, a_] := c[n, a]/(c[m, a]*c[n - m, a]); Table[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}], {a, 1, 10}]; Table[Flatten[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}]], {a, 1, 10}]
Comments