A172352 Triangle t(n,k) read by rows: fibonomial ratios c(n)/(c(k)*c(n-k)) where c are partial products of a generalized Fibonacci sequence with multiplier m=7.
1, 1, 1, 1, 1, 1, 1, 8, 8, 1, 1, 15, 120, 15, 1, 1, 71, 1065, 1065, 71, 1, 1, 176, 12496, 23430, 12496, 176, 1, 1, 673, 118448, 1051226, 1051226, 118448, 673, 1, 1, 1905, 1282065, 28205430, 133505702, 28205430, 1282065, 1905, 1, 1, 6616, 12603480
Offset: 0
Examples
1; 1, 1; 1, 1, 1; 1, 8, 8, 1; 1, 15, 120, 15, 1; 1, 71, 1065, 1065, 71, 1; 1, 176, 12496, 23430, 12496, 176, 1; 1, 673, 118448, 1051226, 1051226, 118448, 673, 1; 1, 1905, 1282065, 28205430, 133505702, 28205430, 1282065, 1905, 1; 1, 6616, 12603480, 1060267755, 12440474992, 12440474992, 1060267755, 12603480, 6616, 1;
Programs
-
Mathematica
Clear[f, c, a, t]; f[0, a_] := 0; f[1, a_] := 1; f[n_, a_] := f[n, a] = f[n - 1, a] + a*f[n - 2, a]; c[n_, a_] := If[n == 0, 1, Product[f[i, a], {i, 1, n}]]; t[n_, m_, a_] := c[n, a]/(c[m, a]*c[n - m, a]); Table[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}], {a, 1, 10}]; Table[Flatten[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}]], {a, 1, 10}]
Comments