cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172355 Triangle t(n,k) read by rows: generalized Padovan factorial ratios c(n)/(c(k)*c(n-k)) where c are partial products of a generalized Padovan sequence with multiplier m=5.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 5, 5, 1, 1, 6, 30, 6, 1, 1, 26, 156, 156, 26, 1, 1, 35, 910, 1092, 910, 35, 1, 1, 136, 4760, 24752, 24752, 4760, 136, 1, 1, 201, 27336, 191352, 829192, 191352, 27336, 201, 1, 1, 715, 143715, 3909048, 22802780, 22802780, 3909048, 143715, 715
Offset: 0

Views

Author

Roger L. Bagula, Feb 01 2010

Keywords

Comments

Start from the generalized Padovan sequence f(n) = 0, 1, 1, 5, 6, 26, 35, 136, 201, 715, 1141, 3776,.. , f(n) = 5*f(n-2)+f(n-3), and its partial products c(n) = 1, 1, 1, 5, 30, 780, 27300, 3712800, 746272800, 533585052000.. Then t(n,k) = c(n)/(c(k)*c(n-k)).
Row sums are 1, 2, 3, 12, 44, 366, 2984, 59298, 1266972, 53712518, 2554657926,....
Note that rows n>= 14 contain fractions. - R. J. Mathar, Jul 05 2012

Examples

			1;
1, 1;
1, 1, 1;
1, 5, 5, 1;
1, 6, 30, 6, 1;
1, 26, 156, 156, 26, 1;
1, 35, 910, 1092, 910, 35, 1;
1, 136, 4760, 24752, 24752, 4760, 136, 1;
1, 201, 27336, 191352, 829192, 191352, 27336, 201, 1;
1, 715, 143715, 3909048, 22802780, 22802780, 3909048, 143715, 715, 1;
1, 1141, 815815, 32795763, 743370628, 1000691230, 743370628, 32795763, 815815, 1141, 1;
		

Crossrefs

Programs

  • Mathematica
    Clear[f, c, a, t];
    f[0, a_] := 0; f[1, a_] := 1; f[2, a_] := 1;
    f[n_, a_] := f[n, a] = a*f[n - 2, a] + f[n - 3, a];
    c[n_, a_] := If[n == 0, 1, Product[f[i, a], {i, 1, n}]];
    t[n_, m_, a_] := c[n, a]/(c[m, a]*c[n - m, a]);
    Table[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}], {a, 1, 10}];
    Table[Flatten[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}]], {a, 1, 10}]