A172395 G.f. satisfies: A(x) = G(x/A(x)) where o.g.f. G(x) = A(x*G(x)) = Sum_{n>=0} A000085(n)*x^n.
1, 1, 1, 0, 1, 0, 4, 0, 27, 0, 248, 0, 2830, 0, 38232, 0, 593859, 0, 10401712, 0, 202601898, 0, 4342263000, 0, 101551822350, 0, 2573779506192, 0, 70282204726396, 0, 2057490936366320, 0, 64291032462761955, 0, 2136017303903513184, 0
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + x^2 + x^4 + 4*x^6 + 27*x^8 + 248*x^10 +... where G(x) = A(x*G(x)) is the o.g.f. of A000085: G(x) = 1 + x + 2*x^2 + 4*x^3 + 10*x^4 + 26*x^5 + 76*x^6 + 232*x^7 +... while the e.g.f. of A000085 is given by: exp(x+x^2/2) = 1 + x + 2*x^2/2! + 4*x^3/3! + 10*x^4/4! + 26*x^5/5! +...
Links
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
Programs
-
PARI
{a(n)=local(G=sum(m=0,n,m!*polcoeff(exp(x+x^2/2+x*O(x^m)),m)*x^m)+x*O(x^n));polcoeff(x/serreverse(x*G),n)}
Formula
a(2n-2) = A000699(n), the number of irreducible diagrams with 2n nodes, for n>=1.
a(2n-1) = 0 for n>=2, with a(1)=1.
Comments