cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172396 G.f. satisfies: A(x) = G(x/A(x)) where o.g.f. G(x) = A(x*G(x)) = Sum_{n>=0} A003701(n)*x^n.

Original entry on oeis.org

1, 1, 1, 0, 3, 0, 38, 0, 947, 0, 37394, 0, 2120190, 0, 162980012, 0, 16330173251, 0, 2070201641498, 0, 324240251016266, 0, 61525045423103316, 0, 13913915097436287598, 0, 3698477457114061621492, 0
Offset: 0

Views

Author

Paul D. Hanna, Feb 07 2010

Keywords

Comments

The e.g.f. of A003701 is exp(x)/cos(x) = Sum_{n>=0} A003701(n)*x^n/n!.
Compare to A157308 and A157310.

Examples

			G.f.: A(x) = 1 + x + x^2 + 3*x^4 + 38*x^6 + 947*x^8 + 37394*x^10 +...
where G(x) = A(x*G(x)) is the o.g.f. of A003701:
G(x) = 1 + x + 2*x^2 + 4*x^3 + 12*x^4 + 36*x^5 + 152*x^6 + 624*x^7 +...
while the e.g.f. of A003701 is given by:
exp(x)/cos(x) = 1 + x + 2*x^2/2! + 4*x^3/3! + 12*x^4/4! + 36*x^5/5! +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(X=x+x*O(x^n),G=sum(m=0,n,m!*polcoeff(exp(X)/cos(X),m)*x^m)+x*O(x^n)); polcoeff(x/serreverse(x*G),n)}

Formula

a(n) = |A157308(n)| = |A157310(n)| for n>=0.
a(2n) = A158119(n) for n>=0; a(2n-1) = 0 for n>=2, with a(1)=1.
G.f. A = A(x) satisfies: A(x) = 1/(1-x/A - (x/A)^2/(1-x/A - 2^2*(x/A)^2/(1-x/A - 3^2*(x/A)^2/(1-x/A - 4^2*(x/A)^2/(1-x/A - 5^2*(x/A)^2/(1-x/A -...)))))), a recursive continued fraction. [From Paul D. Hanna, Jan 05 2012]