A172401
G.f.: 1/(1-x) = Sum_{n>=0} a(n)*x^n/(1+x)^(2^n-1).
Original entry on oeis.org
1, 1, 2, 6, 32, 332, 6928, 292334, 24875760, 4254812880, 1459549877168, 1002824206109916, 1379081986798078000, 3794489305535947254732, 20884859614892223147785056, 229923086002576723635638394810
Offset: 0
1/(1-x) = 1 + x/(1+x) + 2*x^2/(1+x)^3 + 6*x^3/(1+x)^7 + 32*x^4/(1+x)^15 +...
-
{a(n)=if(n==0,1,polcoeff(-(1-x)*sum(m=0,n-1,a(m)*x^m/(1+x +x*O(x^n))^(2^m-1)),n))}
A172402
G.f.: 1/(1-x) = Sum_{n>=0} a(n)*x^n/(1+x)^(2^(n+1)-2).
Original entry on oeis.org
1, 1, 3, 16, 166, 3464, 146167, 12437880, 2127406440, 729774938584, 501412103054958, 689540993399039000, 1897244652767973627366, 10442429807446111573892528, 114961543001288361817819197405
Offset: 0
1/(1-x) = 1 + x/(1+x)^2 + 3*x^2/(1+x)^6 + 16*x^3/(1+x)^14 + 166*x^4/(1+x)^30 +...
-
{a(n)=if(n==0,1,polcoeff(-(1-x)*sum(m=0,n-1,a(m)*x^m/(1+x +x*O(x^n))^(2^(m+1)-2)),n))}
A172403
G.f.: 1/(1-x) = Sum_{n>=0} a(n)*x^n/(1+x)^(2^(n+2)-4).
Original entry on oeis.org
1, 1, 5, 51, 1059, 44620, 3795202, 649054326, 222639357434, 152968659433948, 210361428050679489, 578800452225641673965, 3185715127946958245708501, 35071788327149162320178667272, 772254422082165524711277630023576
Offset: 0
1/(1-x) = 1 + x/(1+x)^4 + 5*x^2/(1+x)^12 + 51*x^3/(1+x)^28 + 1059*x^4/(1+x)^60 +...
-
{a(n)=if(n==0,1,polcoeff(-(1-x)*sum(m=0,n-1,a(m)*x^m/(1+x +x*O(x^n))^(2^(m+2)-4)),n))}
Showing 1-3 of 3 results.