A172433 Let u(n) = Sum [n/[sqrt k]] and v(n) = Sum [n/(sqrt k)] where the summation index k ranges from 1 to infinity, although both sums are actually finite. Here [a] denotes the integer part of a. Then a(n) = u(n) - v(n).
2, 6, 9, 16, 17, 27, 26, 36, 38, 48, 43, 67, 59, 67, 72, 88, 75, 102, 86, 111, 115, 123, 99, 150, 137, 142, 139, 169, 141, 192, 166, 192, 186, 189, 176, 253, 214, 217, 207, 263, 223, 284, 239, 269, 285, 285, 230, 332, 294, 325, 305, 339, 282, 350, 324, 391, 370, 369, 300, 448, 382, 377, 385, 438, 400
Offset: 1
Keywords
Programs
-
PARI
a(n) = round(suminf(k=1, floor(n/sqrtint(k))) - suminf(k=1, floor(n/sqrt(k)))) \\ Michel Marcus, Jul 17 2013
-
PARI
a(n) = sum(k=1, (n+1)^2, floor(n/sqrtint(k))) - sum(k=1, (n+1)^2, floor(n/sqrt(k))) \\ Michel Marcus, Jul 17 2013
Extensions
Definition clarified by Gihan Marasingha (G_Marasingha(AT)hotmail.com), Feb 10 2010
Comments