cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172450 The case S(2,0,-1) of the family of self-convolutive recurrences studied by Martin and Kearney.

Original entry on oeis.org

1, 3, 12, 63, 432, 3798, 41472, 543483, 8301312, 144502218, 2818685952, 60826110678, 1437615931392, 36914181252588, 1022923413061632, 30419533530730323, 966125479213596672, 32634383834158752258, 1168128785923721920512
Offset: 1

Views

Author

N. J. A. Sloane, Nov 20 2010

Keywords

Examples

			x + 3*x^2 + 12*x^3 + 63*x^4 + 432*x^5 + 3798*x^6 + 41472*x^7 + 543483*x^8 + ...
		

Crossrefs

Cf. A005411.

Programs

  • Maple
    ser := series(BesselK(0,-1/x)/BesselK(1,-1/x) - 1, x, 20):
    seq((1/2)*4^n*coeff(ser,x,n), n=0..19); # Peter Luschny, Dec 11 2017
  • Mathematica
    Clear[a]; a[1] = 1; a[n_]:= a[n] = 2*n*a[n-1] - Sum[a[k]*a[n-k], {k, 1, n-1}]; Table[a[n], {n, 1, 20}] (* Vaclav Kotesovec, Jan 19 2015 *)
  • PARI
    {a(n) = local(A); if( n<1, 0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = 2 * k * A[k-1] - sum( j=1, k-1, A[j] * A[k-j])); A[n])} /* Michael Somos, Jul 24 2011 */

Formula

a(n) = 2 * n * a(n-1) - Sum_{k=1..n-1} a(k) * a(n-k) if n>1. - Michael Somos, Jul 24 2011
G.f.: x / (1 - 3*x / (1 - 1*x / (1 - 5*x / (1 - 3*x / (1 - 7*x / (1 - 5*x / (1 - 9*x / (1 - 7*x / (1 - 11*x / (1 - 9*x / (1 - 13*x / (1 - 11*x / ... )))))))))))). - Michael Somos, Jan 03 2013
G.f.: (1/(2*Q(0) - 1) - 1)/(2*x) where Q(k) = 1 - x*(2*k+1)/( 1 - x*(2*k+1)/Q(k+1) ); (continued fraction ). - Sergei N. Gladkovskii, Apr 02 2013
G.f.: Q(0)/x - 1/x, where Q(k)= 1 - x*(2*k-1)/(1 - x*(2*k+3)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, May 21 2013
a(n) ~ 2^n * (n-1)! / Pi. - Vaclav Kotesovec, Jan 19 2015
a(n) = (1/2)*4^n*[x^n](BesselK(0,-1/x)/BesselK(1,-1/x) - 1). - Peter Luschny, Dec 11 2017