cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172494 Numbers k with (p,p+2) = ((2*k)^3/2 - 1,(2*k)^3/2 + 1) is a twin prime pair.

Original entry on oeis.org

1, 3, 87, 195, 243, 297, 408, 495, 522, 528, 573, 600, 798, 885, 903, 957, 1038, 1053, 1110, 1200, 1233, 1293, 1302, 1308, 1368, 1473, 1482, 1578, 1623, 1797, 1953, 2028, 2142, 2238, 2370, 2772, 2868, 2973, 3033, 3393, 3483, 3582, 3777, 3822, 3840, 3912
Offset: 1

Views

Author

Ulrich Krug (leuchtfeuer37(AT)gmx.de), Feb 05 2010

Keywords

Comments

a(n) is necessarily a multiple of 3 for n > 1.

Examples

			3 = (2*1)^3/2 - 1 = prime(2), 3 + 2 = 5 = (2*1)^3/2 + 1, (3,5) is the first twin prime pair => a(1) = 1.
107 = (2*3)^3/2 - 1 = prime(28), 107 + 2 = 109 = (2*3)^3/2 + 1, (107,109) is the 10th twin prime pair => a(2) = 3.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[4000],AllTrue[(2#)^3/2+{1,-1},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jan 21 2015 *)
  • PARI
    select(n -> isprime((2*n)^3/2-1) && isprime((2*n)^3/2+1), [1..4000]) \\ Satish Bysany, Mar 03 2017

Formula

2*a(n) = (2*A172271(n) + 2)^(1/3). - R. J. Mathar, Aug 21 2014