A167389 (arg(exp(-w)) + Im(w)) / (2*Pi), with w = W(n,-log(2)/2)/log(2), where W is the Lambert W function.
2, 3, 5, 6, 8, 9, 10, 12, 13, 15, 16, 18, 19, 21, 22, 23, 25, 26, 28, 29, 31, 32, 34, 35, 36, 38, 39, 41, 42, 44, 45, 47, 48, 49, 51, 52, 54, 55, 57, 58, 60, 61, 62, 64, 65, 67, 68, 70, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 98, 100, 101
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Rob Corless, Poster
- Rob Corless, Lambert W function, copy on web.archove.org as of 07/2011.
- Stephen Crowley, A Mysterious Three Term Integer Sequence Related to a Lambert W Function Solution to a Certain Transcendental Equation [broken link?]
- Eric Weisstein's World of Mathematics, Lambert W-Function.
- Wikipedia, Lambert W function.
Crossrefs
Cf. A172513 (complement).
Programs
-
Maple
seq(round(evalf((argument(exp(-(ln(2)+LambertW(n, -(1/2)*ln(2)))/ln(2)))*ln(2)+Im(LambertW(n,-(1/2)*ln(2))))/(2*Pi*ln(2)))), n = 1 .. 100)
-
Mathematica
a[n_] := (Arg[Exp[-(Log[2] + ProductLog[n, -1/2*Log[2]])/Log[2]]]* Log[2] + Im[ProductLog[n, -1/2*Log[2]]])/(2*Pi*Log[2]); Table[a[n] // Round, {n, 1, 70}] (* Jean-François Alcover, Jun 20 2013 *) Table[Floor[Im@LambertW[n,-Log@2/2]/Log@4/Pi+1/2],{n,69}] (* Travis Scott, Oct 09 2022 *)
Formula
(argument(exp(-(log(2) + W(n,-(1/2)*log(2)))/log(2)))*log(2) + Im(W(n,-(1/2)*log(2))))/ (2*Pi*log(2)).
a(n) ~ n/log(2). - Vaclav Kotesovec, Jul 08 2021
a(n) = floor(Im(W(n,-log(2)/2))/(Pi*log(4))+1/2). - Travis Scott, Oct 09 2022
Comments