cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172519 Number of ways to place 4 nonattacking queens on an n X n toroidal board.

Original entry on oeis.org

0, 0, 0, 0, 50, 288, 2450, 16384, 62208, 233600, 638880, 1755072, 3901534, 8772176, 17051850, 33507328, 59175640, 105557904, 173570244, 287904000, 447885774, 702042000, 1044894554, 1565385984, 2247132500, 3244194304, 4519015596
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 05 2010

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{-1, 3, 6, 3, -9, -20, -11, 15, 40, 31, -15, -53, -50, 0, 50, 53, 15, -31, -40, -15, 11, 20, 9, -3, -6, -3, 1, 1},{0, 0, 0, 0, 0, 50, 288, 2450, 16384, 62208, 233600, 638880, 1755072, 3901534, 8772176, 17051850, 33507328, 59175640, 105557904, 173570244, 287904000, 447885774, 702042000, 1044894554, 1565385984, 2247132500, 3244194304, 4519015596},40] (* Harvey P. Dale, Apr 30 2018 *)

Formula

a(n) = (n^8/24 - n^7 + 245n^6/24 - 113n^5/2 + 2843n^4/16 - 593n^3/2 + 4757n^2/24) + (n^6/8 - 5n^5/2 + 305n^4/16 - 129n^3/2 + 629n^2/8)*(-1)^n + 8n^2*cos(2*Pi*n/3)/3 + 9n^2*cos(Pi*n/2)/2.
Recurrence: a(n) = -a(n-1) + 3a(n-2) + 6a(n-3) + 3a(n-4) - 9a(n-5) - 20a(n-6) - 11a(n-7) + 15a(n-8) + 40a(n-9) + 31a(n-10) - 15a(n-11) - 53a(n-12) - 50a(n-13) + 50a(n-15) + 53a(n-16) + 15a(n-17) - 31a(n-18) - 40a(n-19) - 15a(n-20) + 11a(n-21) + 20a(n-22) + 9a(n-23) - 3a(n-24) - 6a(n-25) - 3a(n-26) + a(n-27) + a(n-28), n >= 29. - Vaclav Kotesovec, Feb 09 2010
G.f.: -2*x^5*(287*x^22 + 5191*x^21 + 25616*x^20 + 105043*x^19 + 280800*x^18 + 651461*x^17 + 1186795*x^16 + 1925172*x^15 + 2611064*x^14 + 3190574*x^13 + 3337574*x^12 + 3161250*x^11 + 2574658*x^10 + 1891298*x^9 + 1175308*x^8 + 649556*x^7 + 291897*x^6 + 115771*x^5 + 34682*x^4 + 8835*x^3 + 1294*x^2 + 169*x + 25) / ((x - 1)^9*(x + 1)^7*(x^2 + 1)^3*(x^2 + x + 1)^3). - Colin Barker, Sep 21 2014