cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A172533 Number of ways to place 6 nonattacking knights on an n X n toroidal board.

Original entry on oeis.org

0, 0, 0, 56, 0, 54972, 764596, 8972896, 62560728, 322246800, 1323868260, 4595943336, 14000143196, 38413461800, 96746410800, 226834407552, 500492572112, 1048044384360, 2096986629308, 4031211268200
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 06 2010

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[4 x^3 (240 x^21 - 3120 x^20 + 20470 x^19 - 105106 x^18 + 512024 x^17 - 2216597 x^16 + 7650408 x^15 - 20251702 x^14 + 41149629 x^13 - 64905350 x^12 + 80399423 x^11 - 78967736 x^10 + 61875645 x^9 - 38631940 x^8 + 19002633 x^7 - 7392461 x^6 + 2560624 x^5 - 840251 x^4 - 8486 x^3 - 14835 x^2 + 182 x - 14) / (x - 1)^13,{x, 0, 50}], x] (* Vincenzo Librandi, May 29 2013 *)

Formula

a(n) = n^2*(n^10-135n^8+8005n^6-262665n^4+4816354n^2-39858840)/720, n>=13.
G.f.: 4*x^4*(240*x^21-3120*x^20+20470*x^19-105106*x^18+512024*x^17-2216597*x^16+7650408*x^15-20251702*x^14+41149629*x^13-64905350*x^12+80399423*x^11-78967736*x^10+61875645*x^9-38631940*x^8+19002633*x^7-7392461*x^6+2560624*x^5-840251*x^4-8486*x^3-14835*x^2+182*x-14)/(x-1)^13. - Vaclav Kotesovec, Mar 25 2010

A172967 Number of ways to place 5 nonattacking knights on an n X n cylindrical board.

Original entry on oeis.org

0, 0, 0, 208, 3210, 58056, 458157, 2524176, 10587591, 36576380, 109008735, 289450344, 700477401, 1570789892, 3304892985, 6586928032, 12530769343, 22891446252
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 06 2010

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[- x^3 (468 x^16 - 7964 x^15 + 57164 x^14 - 238936 x^13 + 664383 x^12 - 1323653 x^11 + 1986964 x^10 - 2334676 x^9 + 2209082 x^8 - 1718662 x^7 + 1118210 x^6 - 595746 x^5 + 216519 x^4 - 38229 x^3 + 34186 x^2 + 922 x + 208) / (x - 1)^11, {x, 0, 50}], x] (* Vincenzo Librandi, May 29 2013 *)

Formula

Explicit formula: a(n) = n*(n^9-90n^7+120n^6+3395n^5-8160n^4-62130n^3+204000n^2+463464n-1888080)/120, n>=10. For any fixed value of k > 1, a(n) = n^(2k)/k! - 9n^(2k-2)/2/(k-2)! + 6n^(2k-3)/(k-2)! + ... [Vaclav Kotesovec, Jan 31 2010]
G.f.: -x^4*(468*x^16-7964*x^15+57164*x^14-238936*x^13+664383*x^12-1323653*x^11+1986964*x^10-2334676*x^9+2209082*x^8-1718662*x^7+1118210*x^6-595746*x^5+216519*x^4-38229*x^3+34186*x^2+922*x+208)/(x-1)^11. [Vaclav Kotesovec, Mar 25 2010]

A173436 Number of ways to place 7 nonattacking knights on an n X n toroidal board.

Original entry on oeis.org

0, 0, 0, 16, 0, 80352, 1359288, 31404480, 339256836, 2527519400, 14053530964, 63100177488, 240356217660, 803630856504, 2416671974700, 6655251717376, 17015566051020, 40822003107000, 92679987456312, 200490192134800
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 18 2010

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[- 4 x^3 (2535 x^24 - 61497 x^23 + 627330 x^22 - 3849410 x^21 + 16791330 x^20 - 58053150 x^19 + 170691269 x^18 - 438580125 x^17 + 976505385 x^16 - 1844050487 x^15 + 2900976825 x^14 - 3760563305 x^13 + 3991133690 x^12 - 3450574470 x^11 + 2418714751 x^10 - 1370750375 x^9 + 628081926 x^8 - 228075638 x^7 + 56855445 x^6 - 6423333 x^5 + 4868490 x^4 + 36682 x^3 + 20508 x^2 - 60 x + 4) / (x - 1)^15, {x, 0, 50}], x] (* Vincenzo Librandi, May 30 2013 *)

Formula

Explicit formula: a(n) = n^2*(n^12-189n^10+16135n^8-801255n^6+24595984n^4-445931556n^2+3756080880)/5040, n>=14. For any fixed value of k > 1, a(n) = n^(2k)/k! - 9n^(2k-2)/2/(k-2)! + (243k+143)*n^(2k-4)/24/(k-3)! - ...
G.f.: -4*x^4 * (2535*x^24 -61497*x^23 +627330*x^22 -3849410*x^21 +16791330*x^20 -58053150*x^19 +170691269*x^18 -438580125*x^17 +976505385*x^16 -1844050487*x^15 +2900976825*x^14 -3760563305*x^13 +3991133690*x^12 -3450574470*x^11 +2418714751*x^10 -1370750375*x^9 +628081926*x^8 -228075638*x^7 +56855445*x^6 -6423333*x^5 +4868490*x^4 +36682*x^3 +20508*x^2 -60*x +4) / (x-1)^15. [Vaclav Kotesovec, Mar 25 2010]
Showing 1-3 of 3 results.