cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173052 Partial sums of A072857.

Original entry on oeis.org

1, 3, 16, 53, 160, 273, 410, 1423, 2460, 3539, 4776, 6143, 7522, 17601, 27724, 37860, 47999, 58236, 68515, 78882, 89261, 101640, 115319, 215598, 315977, 417214, 519561, 621940, 725619, 849098, 1850335, 2852682, 3855061, 4858740, 5871089
Offset: 1

Views

Author

Jonathan Vos Post, Feb 08 2010

Keywords

Comments

Partial sums of primeval numbers. Primeval number: a prime which "contains" more primes in it than any preceding number. Here "contains" means may be constructed from a subset of its digits. E.g., 1379 contains 3, 7, 13, 17, 19, 31, 37, 71, 73, 79, 97, 137, 139, 173, 179, 193, 197, 317, 379, 397, 719, 739, 937, 971, 1973, 3719, 3917, 7193, 9137, 9173 and 9371. The subsequence of prime partial sums of primeval numbers begins: 3, 53, 1423, 3539, 6143, 89261, 115319, 315977. What is the smallest primeval prime partial sums of primeval numbers, i.e. the intersection of this sequence with A119535?

Examples

			a(36) = 1 + 2 + 13 + 37 + 107 + 113 + 137 + 1013 + 1037 + 1079 + 1237 + 1367 + 1379 + 10079 + 10123 + 10136 + 10139 + 10237 + 10279 + 10367 + 10379 + 12379 + 13679 + 100279 + 100379 + 101237 + 102347 + 102379 + 103679 + 123479 + 1001237 + 1002347 + 1002379 + 1003679 + 1012349 + 1012379.
		

Crossrefs

Cf. A000040, A072857, A039993, A075053, A076497, A076449, A119535 (prime subsequence).

Formula

a(n) = SUM[i=1..n] A072857(i) = SUM[i=1..n] {numbers that set a record for the number of distinct primes that can be obtained by permuting some subset of their digits}.