cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A173060 Partial sums of A024785.

Original entry on oeis.org

2, 5, 10, 17, 30, 47, 70, 107, 150, 197, 250, 317, 390, 473, 570, 683, 820, 987, 1160, 1357, 1580, 1863, 2176, 2493, 2830, 3177, 3530, 3897, 4270, 4653, 5050, 5493, 5960, 6483, 7030, 7643, 8260, 8903, 9550, 10203, 10876, 11559, 12302, 13075, 13872
Offset: 1

Views

Author

Jonathan Vos Post, Feb 08 2010

Keywords

Comments

Partial sums of left-truncatable primes. This sequence has 4260 terms. The subsequence of prime partial sums of left-truncatable primes begins 2, 5, 17, 47, 107, 197, 317, 683, 7643. The subsubsequence of left-truncatable prime partial sums of left-truncatable primes begins 2, 5, 197, 317.

Examples

			a(57) = 2 + 3 + 5 + 7 + 13 + 17 + 23 + 37 + 43 + 47 + 53 + 67 + 73 + 83 + 97 + 113 + 137 + 167 + 173 + 197 + 223 + 283 + 313 + 317 + 337 + 347 + 353 + 367 + 373 + 383 + 397 + 443 + 467 + 523 + 547 + 613 + 617 + 643 + 647 + 653 + 673 + 683 + 743 + 773 + 797 + 823 + 853 + 883 + 937 + 947 + 953 + 967 + 983 + 997 + 1223 + 1283 + 1367.
		

Crossrefs

Formula

a(n) = SUM[i=1..n] A024785(i) = SUM[i=1..n] {p prime, and every suffix of p in decimal expansion is prime, and no digits are zero}.
Showing 1-1 of 1 results.