cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A236856 Partial sums of A003418 starting summing from A003418(1), with a(0) = 0.

Original entry on oeis.org

0, 1, 3, 9, 21, 81, 141, 561, 1401, 3921, 6441, 34161, 61881, 422241, 782601, 1142961, 1863681, 14115921, 26368161, 259160721, 491953281, 724745841, 957538401, 6311767281, 11665996161, 38437140561, 65208284961, 145521718161, 225835151361, 2554924714161
Offset: 0

Views

Author

Antti Karttunen, Feb 27 2014

Keywords

Comments

Similar comments about the trailing digits apply here as in A173185.
a(n) gives the position of the last element of row n in irregular tables like A238280.
From a(2)=3 onward all terms are divisible by three.
a(n) is divisible by 73 for n >= 72. Therefore a(n)/3 is prime for only 13 values of n: 3, 4, 6, 8, 9, 12, 16, 22, 23, 31, 35, 48 and 53. - Amiram Eldar, Sep 19 2022

Crossrefs

One less than A173185.

Programs

  • Mathematica
    Prepend[Accumulate @ Table[LCM @@ Range[n], {n, 1, 30}], 0] (* Amiram Eldar, Sep 19 2022 *)
  • Scheme
    (define (A236856 n) (if (< n 2) n (+ (A236856 (- n 1)) (A003418 n))))

Formula

a(n) = A173185(n)-1.

A238280 Irregular triangle read by rows, T(n,k) = Sum_{i = 1..n} k mod i, k = 1..m where m = lcm(1..n).

Original entry on oeis.org

0, 1, 0, 2, 2, 1, 1, 3, 0, 3, 4, 4, 1, 4, 2, 5, 2, 2, 3, 6, 0, 4, 6, 7, 5, 4, 3, 7, 5, 6, 3, 7, 2, 6, 8, 4, 2, 6, 5, 9, 2, 3, 5, 9, 4, 3, 5, 6, 4, 8, 2, 6, 4, 5, 7, 6, 1, 5, 7, 8, 1, 5, 4, 8, 6, 2, 4, 8, 3, 7, 4, 5, 3, 7, 6, 5, 3, 4, 6, 10, 0, 5, 8, 10, 9, 9, 3, 8, 7, 9, 7, 12, 2, 7, 10, 7, 6, 11, 5, 10, 4, 6, 9, 14, 4, 4, 7, 9, 8, 13, 2, 7, 6, 8, 11
Offset: 1

Views

Author

Kival Ngaokrajang, Feb 22 2014

Keywords

Comments

Row n contains A003418(n) terms.
The penultimate term (the one before zero) of row n = A000217(n-1).

Examples

			Row n of this irregular triangle is obtained by taking the first A003418(n) = lcm(1..n) terms (up to and including the first zero) of the following array (which starts at row n=1 and column k=1 and is periodic in each row):
  0; 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
  1  0; 1  0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1  0
  2  2  1  1  3  0; 2  2  1  1  3  0  2  2  1  1  3  0  2  2 # A110269
  3  4  4  1  4  2  5  2  2  3  6  0; 3  4  4  1  4  2  5  2
  4  6  7  5  4  3  7  5  6  3  7  2  6  8  4  2  6  5  9  2
  5  8 10  9  9  3  8  7  9  7 12  2  7 10  7  6 11  5 10  4
  6 10 13 13 14  9  8  8 11 10 16  7 13 10  8  8 14  9 15 10
  7 12 16 17 19 15 15  8 12 12 19 11 18 16 15  8 15 11 18 14
  8 14 19 21 24 21 22 16 12 13 21 14 22 21 21 15 23 11 19 16
  9 16 22 25 29 27 29 24 21 13 22 16 25 25 26 21 30 19 28 16
		

Crossrefs

Programs

  • Scheme
    (define (A238280 n) (A238280tabf (A236857 n) (A236858 n)))
    (define (A238280tabf n k) (add (lambda (i) (modulo k i)) 1 n))
    ;; Implements sum_{i=lowlim..uplim} intfun(i):
    (define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (1+ i) (+ res (intfun i)))))))
    ;; Antti Karttunen, Feb 27 2014
Showing 1-2 of 2 results.