cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173195 Values of k such that 4^x + 4^y + 4^z = k^2 with arbitrary integers x <= y <= z.

Original entry on oeis.org

3, 6, 9, 12, 18, 24, 33, 36, 48, 66, 72, 96, 129, 132, 144, 192, 258, 264, 288, 384, 513, 516, 528, 576, 768, 1026, 1032, 1056, 1152, 1536, 2049, 2052, 2064, 2112, 2304, 3072, 4098, 4104, 4128, 4224, 4608, 6144, 8193, 8196, 8208, 8256, 8448, 9216, 12288
Offset: 1

Views

Author

Michel Lagneau, Feb 12 2010

Keywords

Comments

We prove that the solutions of 4^x + 4^y + 4^z = k^2 are (x,y,2y-x-1), for any arbitrary integer x,y. We calculate z. 4^x + 4^y + 4^z is square if positive integers m and odd integer t are such as : 1 + 4^(y-x) + 4^(z-x) = (1 + t*2^m)^2, that's why : (1 + 4^(z-y)*( 4^(y-x)) = t(1 + t*2^(m+1)) t.2^(m+1), and then m = 2y - 2x - 1. If we report this value in the precedent equation, we obtain : t-1 = (2^(z-2y+x+1) + t)(2^(z-2y+x+1) - t) * 4^(y-x-1). Because t is odd, z = 2y - x - 1. Finally, this values gives the square (2^x + 2^(2y-x-1))^2 = k^2.
From Frederik P.J. Vandecasteele, Jun 06 2025: (Start)
For a given n, the exponents are x = A384688(n-1), y = A138099(n), z = A000267(n-1) so that a(n) = 2^A384688(n-1) + 2^A000267(n-1).
Terms are all and only those k whose binary expansion is two 1 bits an odd distance apart. (End)

Examples

			x = 0, y = 1 then z = 1, and k = 3.
x = 1, y = 2 then z = 2, and k = 6.
x = 0, y = 2 then z = 3, and k = 9.
		

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976.
  • J. M. De Koninck, A. Mercier, 1001 problèmes en théorie classique des nombres. Ellipses, 2004.
  • H. N. Shapiro, Introduction to the Theory of Numbers, John Wiley & Sons, 1983.

Crossrefs

Cf. A263132.
Subsequence of A018900.

Programs

  • Maple
    for x from 0 to 1000 do :for y from x to 1000 do: n := evalf(2^x + 2^(2*y-x-1)): print (n) ; od :od :
  • Mathematica
    Take[Union[Select[Sqrt[Flatten[Table[(2^x + 2^(2*y - x - 1))^2, {x, 0, 13}, {y, 0, 13}]]], IntegerQ]],49] (* Jean-François Alcover, Sep 13 2011 *)

Formula

k = 2^x + 2^(2y-x-1), and z = 2y - x - 1.
Conjecture: a(n) = 3*A263132(n). - George Beck, May 05 2021