A173195 Values of k such that 4^x + 4^y + 4^z = k^2 with arbitrary integers x <= y <= z.
3, 6, 9, 12, 18, 24, 33, 36, 48, 66, 72, 96, 129, 132, 144, 192, 258, 264, 288, 384, 513, 516, 528, 576, 768, 1026, 1032, 1056, 1152, 1536, 2049, 2052, 2064, 2112, 2304, 3072, 4098, 4104, 4128, 4224, 4608, 6144, 8193, 8196, 8208, 8256, 8448, 9216, 12288
Offset: 1
Examples
x = 0, y = 1 then z = 1, and k = 3. x = 1, y = 2 then z = 2, and k = 6. x = 0, y = 2 then z = 3, and k = 9.
References
- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976.
- J. M. De Koninck, A. Mercier, 1001 problèmes en théorie classique des nombres. Ellipses, 2004.
- H. N. Shapiro, Introduction to the Theory of Numbers, John Wiley & Sons, 1983.
Links
- David A. Corneth, Table of n, a(n) for n = 1..9999 (terms <= 10^60)
Programs
-
Maple
for x from 0 to 1000 do :for y from x to 1000 do: n := evalf(2^x + 2^(2*y-x-1)): print (n) ; od :od :
-
Mathematica
Take[Union[Select[Sqrt[Flatten[Table[(2^x + 2^(2*y - x - 1))^2, {x, 0, 13}, {y, 0, 13}]]], IntegerQ]],49] (* Jean-François Alcover, Sep 13 2011 *)
Formula
k = 2^x + 2^(2y-x-1), and z = 2y - x - 1.
Conjecture: a(n) = 3*A263132(n). - George Beck, May 05 2021
Comments