A173209 Partial sums of A000069.
1, 3, 7, 14, 22, 33, 46, 60, 76, 95, 116, 138, 163, 189, 217, 248, 280, 315, 352, 390, 431, 473, 517, 564, 613, 663, 715, 770, 826, 885, 946, 1008, 1072, 1139, 1208, 1278, 1351, 1425, 1501, 1580, 1661, 1743, 1827, 1914, 2002, 2093, 2186, 2280, 2377, 2475, 2575
Offset: 1
Examples
a(65) = 1 + 2 + 4 + 7 + 8 + 11 + 13 + 14 + 16 + 19 + 21 + 22 + 25 + 26 + 28 + 31 + 32 + 35 + 37 + 38 + 41 + 42 + 44 + 47 + 49 + 50 + 52 + 55 + 56 + 59 + 61 + 62 + 64 + 67 + 69 + 70 + 73 + 74 + 76 + 79 + 81 + 82 + 84 + 87 + 88 + 91 + 93 + 94 + 97 + 98 + 100 + 103 + 104 + 107 + 109 + 110 + 112 + 115 + 117 + 118 + 121 + 122 + 124 + 127 + 128.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..16384
- Jean-Paul Allouche, Benoit Cloitre, and Vladimir Shevelev, Beyond odious and evil, arXiv preprint arXiv:1405.6214 [math.NT], 2014.
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 52.
Crossrefs
Programs
-
Mathematica
Accumulate@ Select[Range[100], OddQ@ DigitCount[#, 2, 1] &] (* Michael De Vlieger, Nov 01 2022 *)
-
PARI
a(n)=n^2-(n+1)\2+(n%2&&hammingweight(n)%2) \\ Charles R Greathouse IV, Mar 22 2013
Formula
a(n) = n^2 - n/2 + O(1). - Charles R Greathouse IV, Mar 22 2013
Comments