A173254 a(n) = a(n-1) + a(n-2) - [a(n-2)/2] - [a(n-4)/2].
1, 1, 2, 3, 4, 6, 7, 9, 11, 13, 16, 19, 22, 26, 29, 33, 37, 41, 46, 51, 56, 62, 67, 73, 79, 85, 92, 99, 106, 114, 121, 129, 137, 145, 154, 163, 172, 182, 191, 201, 211, 221, 232, 243, 254, 266, 277, 289, 301, 313, 326
Offset: 0
Keywords
Crossrefs
Cf. A023434
Programs
-
Mathematica
f[-2] = 0; f[-1] = 0; f[0] = 1; f[1] = 1; f[n_] := f[n] = f[n - 1] + f[n - 2] - Floor[f[n - 2]/2] - Floor[f[n - 4]/2] Table[f[n], {n, 0, 50}]
Formula
a(n)=a(n-1)+a(n-2)-Floor[a(n-2)/2]-Floor[a(n-4)/2]
Comments