cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173256 Partial sums of A001481.

Original entry on oeis.org

0, 1, 3, 7, 12, 20, 29, 39, 52, 68, 85, 103, 123, 148, 174, 203, 235, 269, 305, 342, 382, 423, 468, 517, 567, 619, 672, 730, 791, 855, 920, 988, 1060, 1133, 1207, 1287, 1368, 1450, 1535, 1624, 1714, 1811, 1909, 2009, 2110, 2214, 2320, 2429, 2542, 2658, 2775
Offset: 1

Views

Author

Jonathan Vos Post, Feb 14 2010

Keywords

Comments

The subsequence of primes in this sequence begins 3, 7, 29, 103, 269, 619, 1811, 3271.

Examples

			a(66) = 0 + 1 + 2 + 4 + 5 + 8 + 9 + 10 + 13 + 16 + 17 + 18 + 20 + 25 + 26 + 29 + 32 + 34 + 36 + 37 + 40 + 41 + 45 + 49 + 50 + 52 + 53 + 58 + 61 + 64 + 65 + 68 + 72 + 73 + 74 + 80 + 81 + 82 + 85 + 89 + 90 + 97 + 98 + 100 + 101 + 104 + 106 + 109 + 113 + 116 + 117 + 121 + 122 + 125 + 128 + 130 + 136 + 137 + 144 + 145 + 146 + 148 + 149 + 153 + 157 + 160 = 4876.
		

Crossrefs

Programs

  • Maple
    N:= 1000:
    A001481:= sort(convert({seq(seq(x^2+y^2, y=0..floor(sqrt(N-x^2))),x=0..floor(sqrt(N)))},list)):
    ListTools:-PartialSums(A001481); # Robert Israel, Mar 15 2016
  • Python
    from itertools import count, accumulate, islice
    from sympy import factorint
    def A173256_gen(): # generator of terms
        return accumulate(filter(lambda n:all(p & 3 != 3 or e & 1 == 0 for p, e in factorint(n).items()),count(0)))
    A173256_list = list(islice(A173256_gen(),30)) # Chai Wah Wu, Jun 27 2022

Formula

a(n) = Sum_{i=1..n} A001481(i) = Sum_{i=1..n} (numbers that are the sum of 2 nonnegative squares) = Sum_{i=1..n} (numbers n such that i = x^2 + y^2 has a solution in nonnegative integers x, y).

Extensions

a(21) corrected by Robert Israel, Mar 15 2016