A173256 Partial sums of A001481.
0, 1, 3, 7, 12, 20, 29, 39, 52, 68, 85, 103, 123, 148, 174, 203, 235, 269, 305, 342, 382, 423, 468, 517, 567, 619, 672, 730, 791, 855, 920, 988, 1060, 1133, 1207, 1287, 1368, 1450, 1535, 1624, 1714, 1811, 1909, 2009, 2110, 2214, 2320, 2429, 2542, 2658, 2775
Offset: 1
Keywords
Examples
a(66) = 0 + 1 + 2 + 4 + 5 + 8 + 9 + 10 + 13 + 16 + 17 + 18 + 20 + 25 + 26 + 29 + 32 + 34 + 36 + 37 + 40 + 41 + 45 + 49 + 50 + 52 + 53 + 58 + 61 + 64 + 65 + 68 + 72 + 73 + 74 + 80 + 81 + 82 + 85 + 89 + 90 + 97 + 98 + 100 + 101 + 104 + 106 + 109 + 113 + 116 + 117 + 121 + 122 + 125 + 128 + 130 + 136 + 137 + 144 + 145 + 146 + 148 + 149 + 153 + 157 + 160 = 4876.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
N:= 1000: A001481:= sort(convert({seq(seq(x^2+y^2, y=0..floor(sqrt(N-x^2))),x=0..floor(sqrt(N)))},list)): ListTools:-PartialSums(A001481); # Robert Israel, Mar 15 2016
-
Python
from itertools import count, accumulate, islice from sympy import factorint def A173256_gen(): # generator of terms return accumulate(filter(lambda n:all(p & 3 != 3 or e & 1 == 0 for p, e in factorint(n).items()),count(0))) A173256_list = list(islice(A173256_gen(),30)) # Chai Wah Wu, Jun 27 2022
Formula
a(n) = Sum_{i=1..n} A001481(i) = Sum_{i=1..n} (numbers that are the sum of 2 nonnegative squares) = Sum_{i=1..n} (numbers n such that i = x^2 + y^2 has a solution in nonnegative integers x, y).
Extensions
a(21) corrected by Robert Israel, Mar 15 2016
Comments