cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173285 A(x) satisfies: Fibonacci(x)/x = A(x)/A(x^2).

Original entry on oeis.org

1, 1, 3, 4, 10, 14, 28, 42, 80, 122, 216, 338, 582, 920, 1544, 2464, 4088, 6552, 10762, 17314, 28292, 45606, 74236, 119842, 194660, 314502, 510082, 824584, 1336210, 2160794, 3499468, 5660262, 9163818, 14824080, 23994450, 38818530, 62823742, 101642272
Offset: 0

Views

Author

Gary W. Adamson, Feb 14 2010

Keywords

Crossrefs

Programs

  • Maple
    A173285 := proc(n) option remember; if n = 0 then 1; else add(procname(l)*combinat[fibonacci](n-2*l+1),l=0..n/2) ; end if; end proc:
    seq(A173285(n),n=0..60) ; # R. J. Mathar, Apr 01 2010
  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, Sum[Fibonacci[n-2k+1] a[k], {k, 0, n/2}]];
    a /@ Range[0, 40] (* Jean-François Alcover, Oct 02 2019 *)

Formula

a(n) = Sum_{k=0..n/2} A000045(n-2*k+1)*a(k). - R. J. Mathar, Apr 02 2010
Given M = triangle A173284, A173285 as a left-shifted vector = lim_{n->inf} M^n.
G.f.: Product_{k>=0} 1/(1 - x^(2^k) - x^(2^(k + 1))). - Ilya Gutkovskiy, Aug 30 2017
a(n) ~ c * phi^(n+1) / sqrt(5), where c = Product_{k>=1} 1/(1 - x^(2^k) - x^(2^(k+1))) = 2.6009165618094467356830434687244547021995030468423430186926... and phi = A001622 is the golden ratio. - Vaclav Kotesovec, Oct 08 2022

Extensions

Division through x added to definition and sequence extended by R. J. Mathar, Apr 22 2010