A173325 Numbers k such that sigma(tau(k)) equals the sum of distinct primes dividing k.
3, 10, 104, 105, 175, 245, 276, 343, 414, 484, 532, 798, 1190, 1430, 1776, 1862, 3105, 3174, 3712, 4394, 5049, 5054, 5104, 5994, 6256, 6360, 6975, 8125, 8480, 8625, 9472, 9648, 10600, 12408, 12789, 14310, 16544, 16625, 16728, 19908, 20295, 21056, 21708
Offset: 1
Keywords
Examples
k=3 with sigma(tau(3)) = sigma(2) = 3 = A008472(3). k=10 with sigma(tau(10)) = sigma(4) = 7 = A008472(10).
Links
- Robert Israel, Table of n, a(n) for n = 1..1000
- C. K. Caldwell, The Prime Glossary, Number of divisors
- P. A. MacMahon, Divisors of numbers and their continuations in the theory of partitions, Proc. London Math. Soc., 19 (1921), 75-113.
- W. Sierpinski, Number Of Divisors And Their Sum
Programs
-
Maple
with(numtheory): for n from 1 to 100000 do : t1:= ifactors(n)[2] : t2 :=sum(t1[i][1], i=1..nops(t1)):if sigma(tau(n)) = t2 then print (n): else fi : od :
Extensions
"sopf" uses replaced and examples disentangled by R. J. Mathar, Feb 24 2010
Comments