cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173330 First of two intermediate sequences for integral solution of A002144(n)=x^2+y^2.

Original entry on oeis.org

1, 10, 1, 5, 1, 5, 46, 5, 70, 5, 9, 1, 106, 106, 126, 142, 146, 13, 9, 186, 1, 214, 13, 226, 1, 13, 9, 5, 17, 13, 306, 9, 5, 17, 366, 17, 378, 1, 406, 406, 17, 442, 21, 442, 5, 510, 21, 538, 13, 1, 570, 5, 17, 598, 25, 13, 25, 650, 1, 5, 694, 706, 9, 742, 25, 17, 786, 5, 25
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 16 2010

Keywords

Comments

A002972(n) = MIN(a(n), A002144(n) - a(n)).

Examples

			n=7: A002144(7) = 53 = 4*13 + 1,
a(7) = 26! / (2*(13!)^2) mod 53 = 403291461126605635584000000/77551576087265280000 mod 53 = 5200300 mod 53 = 46,
A002972(7) = MIN(46, 53 - 46) = 7;
n=8: A002144(8) = 61 = 4*15 + 1,
a(8) = 30! / (2*(15!)^2) mod 61 = 265252859812191058636308480000000/3420024505448398848000000 mod 61 = 77558760 mod 61 = 5,
A002972(8) = MIN(5, 61 - 5) = 5.
		

References

  • H. Davenport, The Higher Arithmetic (Cambridge University Press 7th ed., 1999), ch. V.3, p.122.

Crossrefs

Formula

a(n) = (2k)! / 2(k!)^2 mod p, where p = 4*k+1 = A002144(n).