A173333 Triangle read by rows: T(n, k) = n! / k!, 1 <= k <= n.
1, 2, 1, 6, 3, 1, 24, 12, 4, 1, 120, 60, 20, 5, 1, 720, 360, 120, 30, 6, 1, 5040, 2520, 840, 210, 42, 7, 1, 40320, 20160, 6720, 1680, 336, 56, 8, 1, 362880, 181440, 60480, 15120, 3024, 504, 72, 9, 1, 3628800, 1814400, 604800, 151200, 30240, 5040, 720, 90, 10, 1
Offset: 1
Examples
Triangle starts: n\k 1 2 3 4 5 6 7 8 9 10 ... 1 1 2 2 1 3 6 3 1 4 24 12 4 1 5 120 60 20 5 1 6 720 360 120 30 6 1 7 5040 2520 840 210 42 7 1 8 40320 20160 6720 1680 336 56 8 1 9 362880 181440 60480 15120 3024 504 72 9 1 10 3628800 1814400 604800 151200 30240 5040 720 90 10 1 ... - _Wolfdieter Lang_, Jun 27 2012
Links
Crossrefs
Row sums give A002627.
Central terms give A006963:
T(2*n-1,n) = A006963(n+1).
T(2*n,n) = A001813(n).
T(2*n,n+1) = A001761(n).
1 < k <= n: T(n,k) = T(n,k-1) / k.
1 <= k <= n: T(n+1,k) = A119741(n,n-k+1).
1 <= k <= n: T(n+1,k+1) = A162995(n,k).
T(n,1) = A000142(n).
T(n,2) = A001710(n) for n>1.
T(n,3) = A001715(n) for n>2.
T(n,4) = A001720(n) for n>3.
T(n,5) = A001725(n) for n>4.
T(n,6) = A001730(n) for n>5.
T(n,7) = A049388(n-7) for n>6.
T(n,8) = A049389(n-8) for n>7.
T(n,9) = A049398(n-9) for n>8.
T(n,10) = A051431(n) for n>9.
T(n,n-7) = A159083(n+1) for n>7.
T(n,n-6) = A053625(n+1) for n>6.
T(n,n-5) = A052787(n) for n>5.
T(n,n-4) = A052762(n) for n>4.
T(n,n-3) = A007531(n) for n>3.
T(n,n-2) = A002378(n-1) for n>2.
T(n,n-1) = A000027(n) for n>1.
T(n,n) = A000012(n).
Programs
-
Haskell
a173333 n k = a173333_tabl !! (n-1) !! (k-1) a173333_row n = a173333_tabl !! (n-1) a173333_tabl = map fst $ iterate f ([1], 2) where f (row, i) = (map (* i) row ++ [1], i + 1) -- Reinhard Zumkeller, Jul 04 2012
-
Mathematica
Table[n!/k!, {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Mar 01 2019 *)
Formula
E.g.f.: (exp(x*y) - 1)/(x*(1 - y)). - Olivier Gérard, Jul 07 2011
T(n,k) = A094587(n,k), 1 <= k <= n. - Reinhard Zumkeller, Jul 05 2012
Comments