A173348 Numbers x such that 0 < |x^7 - y^2| < x^(5/2) for some number y.
12, 93, 239, 4896, 4904, 6546, 7806, 9104, 20542, 35962, 43783, 96569, 616400, 635331, 842163, 7888432, 450177181
Offset: 1
Links
- F. Beukers and C. L. Stewart, Neighboring powers, J. Number Theory, 130 (2010), 660-679.
Crossrefs
Cf. A078933 (m=2, n=3, Hall's conjecture)
Cf. A116884 (m=2, n=5)
This sequence (m=2, n=7)
Cf. A173349 (m=2, n=9)
Cf. A173350 (m=2, n=11)
Cf. A173351 (m=3, n=4)
Cf. A173352 (m=3, n=5)
Cf. A173353 (m=3, n=7)
Cf. A173354 (m=3, n=8)
Cf. A173355 (m=3, n=10)
Cf. A173356 (m=3, n=11)
Cf. A173357 (m=4, n=5)
Cf. A173358 (m=4, n=7)
Cf. A173359 (m=4, n=9)
Cf. A173360 (m=4, n=11)
Cf. A173361 (m=5, n=6)
Cf. A173362 (m=5, n=7)
Cf. A173363 (m=5, n=8)
Cf. A173364 (m=5, n=9)
Cf. A173365 (m=5, n=11)
Cf. A173366 (m=5, n=12)
Cf. A173367 (m=6, n=7)
Cf. A173368 (m=6, n=11)
Cf. A173369 (m=7, n=8)
Cf. A173370 (m=7, n=9)
Cf. A173371 (m=7, n=10)
Cf. A173372 (m=7, n=11)
Cf. A173373 (m=7, n=12)
Cf. A173374 (m=8, n=9)
Cf. A173375 (m=8, n=11)
Cf. A173376 (m=9, n=10)
Cf. A173377 (m=9, n=11)
Cf. A173378 (m=10, n=11)
Cf. A173379 (m=11, n=12)
Programs
-
Mathematica
Solutions[n_,m_,lim_] := Module[{x, y, t={}, pow=n*(1-1/m-1/n)}, Do[y=Round[x^(n/m)]; If[0 < Abs[x^n-y^m]
Extensions
a(17) from Robert Price, Apr 15 2021
Comments