A173382 Partial sums of A074206.
0, 1, 2, 3, 5, 6, 9, 10, 14, 16, 19, 20, 28, 29, 32, 35, 43, 44, 52, 53, 61, 64, 67, 68, 88, 90, 93, 97, 105, 106, 119, 120, 136, 139, 142, 145, 171, 172, 175, 178, 198, 199, 212, 213, 221, 229, 232, 233, 281, 283, 291, 294, 302, 303, 323, 326, 346, 349, 352, 353, 397, 398, 401, 409, 441, 444, 457
Offset: 0
Examples
a(96) = 0 + 1 + 1 + 1 + 2 + 1 + 3 + 1 + 4 + 2 + 3 + 1 + 8 + 1 + 3 + 3 + 8 + 1 + 8 + 1 + 8 + 3 + 3 + 1 + 20 + 2 + 3 + 4 + 8 + 1 + 13 + 1 + 16 + 3 + 3 + 3 + 26 + 1 + 3 + 3 + 20 + 1 + 13 + 1 + 8 + 8 + 3 + 1 + 48 + 2 + 8 + 3 + 8 + 1 + 20 + 3 + 20 + 3 + 3 + 1 + 44 + 1 + 3 + 8 + 32 + 3 + 13 + 1 + 8 + 3 + 13 + 1 + 76 + 1 + 3 + 8 + 8 + 3 + 13 + 1 + 48 + 8 + 3 + 1 + 44 + 3 + 3 + 3 + 20 + 1 + 44 + 3 + 8 + 3 + 3 + 3 + 112.
References
- Shikao Ikehara, On Kalmar's Problem in “Factorisatio Numerorum”, Proceedings of the Physico-Mathematical Society of Japan. 3rd Series, Vol. 21 (1939) pp. 208-219.
- Shikao Ikehara, On Kalmar's Problem in “Factorisatio Numerorum” II, Proceedings of the Physico-Mathematical Society of Japan. 3rd Series, Vol. 23 (1941) pp. 767-774.
- Kalmár, Laszlo. "Über die mittlere Anzahl der Produktdarstellungen der Zahlen.(Erste Mitteilung)'." Acta Litt. ac Scient. Szeged 5 (1931): 95-107.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..20000
- David Bevan and Julien Condé, Introducing irrational enumeration: analytic combinatorics for objects of irrational size, arXiv:2412.14682 [math.CO], 2024. See p. 11.
- Ann Clifton, Eva Czabarka, Kevin Liu, Sarah Loeb, Utku Okur, Laszlo Szekely, and Kristina Wicke, Universal rooted phylogenetic tree shapes and universal tanglegrams, arXiv:2308.06580 [math.CO], 2023.
- Vaclav Kotesovec, Graph - the asymptotic ratio
Crossrefs
Programs
-
Mathematica
Clear[a]; a[0] = 0; a[1] = 1; a[n_] := a[n] = 1 + Sum[a[Floor[n/k]], {k, 2, n}]; Table[a[n], {n, 0, 100}] (* Vaclav Kotesovec, Jan 31 2019 *) Clear[a]; a[0] = 0; a[1] = 1; a[n_] := a[n] = Total[a /@ Most[Divisors[n]]]; Join[{0}, Accumulate[a /@ Range[100]]] (* Vaclav Kotesovec, Jan 31 2019, after Jean-François Alcover, faster *)
Formula
a(n) = Sum_{i=0..n} A074206(i).
a(n) ~ -n^r / (r*Zeta'(r)), where r = A107311 = 1.728647238998183618135103... is the root of the equation Zeta(r) = 2. - Vaclav Kotesovec, Jan 31 2019
Extensions
Terms corrected by N. J. A. Sloane, May 04 2016
Comments