A173395 a(n) = (A002260(n) + 1) * (A004736(n) + 1).
4, 6, 6, 8, 9, 8, 10, 12, 12, 10, 12, 15, 16, 15, 12, 14, 18, 20, 20, 18, 14, 16, 21, 24, 25, 24, 21, 16, 18, 24, 28, 30, 30, 28, 24, 18, 20, 27, 32, 35, 36, 35, 32, 27, 20, 22, 30, 36, 40, 42, 42, 40, 36, 30, 22, 24, 33, 40, 45, 48, 49, 48, 45, 40, 33, 24, 26
Offset: 1
Examples
4; 6,6; 8,9,8; 10,12,12,10; 12,15,16,15,12; From _Luc Rousseau_, Oct 15 2017: (Start) Viewed as a square array, 4 6 8 10 12 ... 6 9 12 15 18 ... 8 12 16 20 24 ... 10 15 20 25 30 ... 12 18 24 30 36 ... ... = the multiplication table with headers starting at 2. (End)
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..11325 (rows 1 <= n <= 150).
- Michael Somos, Sequences used for indexing triangular or square arrays.
Programs
-
Mathematica
Map[Times @@ # & /@ Transpose@{#, Reverse@ #} &, Array[Range, 12] + 1] // Flatten (* Michael De Vlieger, Oct 16 2017 *)
-
PARI
a(n) = ((2*n + round(sqrt(2*n)) - round(sqrt(2*n))^2)/2 + 1)*((2 - 2*n + round(sqrt(2*n)) + round(sqrt(2*n))^2)/2 + 1) \\ Michel Marcus, Jun 19 2013
-
PARI
a(n)=my(s=round(sqrt(n*=2)));(n-s-s^2-4)*(n+s-s^2+2)/4 \\ Charles R Greathouse IV, Jun 19 2013
Formula
a(n) = ((2 n + round(sqrt(2n)) - round(sqrt(2n))^2)/2 + 1)((2 - 2n + round(sqrt(2n)) + round(sqrt(2n))^2)/2 + 1).
Comments