cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173424 Triangle read by rows: T(n, k) = (2*n - 2*k)!*(2*k)!/(2^n*(n - k)!*k!).

Original entry on oeis.org

1, 1, 1, 3, 1, 3, 15, 3, 3, 15, 105, 15, 9, 15, 105, 945, 105, 45, 45, 105, 945, 10395, 945, 315, 225, 315, 945, 10395, 135135, 10395, 2835, 1575, 1575, 2835, 10395, 135135, 2027025, 135135, 31185, 14175, 11025, 14175, 31185, 135135, 2027025, 34459425
Offset: 0

Views

Author

Roger L. Bagula, Feb 18 2010

Keywords

Examples

			Triangle T(n, k) starts:
  [0]       1;
  [1]       1,      1;
  [2]       3,      1,     3;
  [3]      15,      3,     3,    15;
  [4]     105,     15,     9,    15,   105;
  [5]     945,    105,    45,    45,   105,   945;
  [6]   10395,    945,   315,   225,   315,   945, 10395;
  [7]  135135,  10395,  2835,  1575,  1575,  2835, 10395, 135135;
  [8] 2027025, 135135, 31185, 14175, 11025, 14175, 31185, 135135, 2027025;
		

Crossrefs

Cf. A034430 (row sums), A006882, A001147.

Programs

  • Maple
    T := (n, k) -> doublefactorial(2*n-1) * binomial(n, k) / binomial(2*n, 2*k):
    for n from 0 to 8 do seq(T(n, k), k = 0..n) od; # Peter Luschny, Apr 15 2023
  • Mathematica
    t[n_, k_] = (2*n - 2*k)!*(2*k)!/(2^n*(n - k)!*k!);
    Table[Table[t[n, k], {k, 0, n}], {n, 0, 10}]; Flatten[%]

Formula

T(n, k) = A006882(2*n-2*k-1) * A006882(2*k-1).
T(n, k) = A001147(n-k) * A001147(k).
From Peter Luschny, Apr 15 2023: (Start)
T(n, k) = (1/Pi) * 2^n * Gamma(k + 1/2) * Gamma(n - k + 1/2).
T(n, k) = (2*n-1)!! * binomial(n, k) / binomial(2*n, 2*k). (End)

Extensions

Formula added by the Assoc. Editors of the OEIS, Feb 24 2010