A173424 Triangle read by rows: T(n, k) = (2*n - 2*k)!*(2*k)!/(2^n*(n - k)!*k!).
1, 1, 1, 3, 1, 3, 15, 3, 3, 15, 105, 15, 9, 15, 105, 945, 105, 45, 45, 105, 945, 10395, 945, 315, 225, 315, 945, 10395, 135135, 10395, 2835, 1575, 1575, 2835, 10395, 135135, 2027025, 135135, 31185, 14175, 11025, 14175, 31185, 135135, 2027025, 34459425
Offset: 0
Examples
Triangle T(n, k) starts: [0] 1; [1] 1, 1; [2] 3, 1, 3; [3] 15, 3, 3, 15; [4] 105, 15, 9, 15, 105; [5] 945, 105, 45, 45, 105, 945; [6] 10395, 945, 315, 225, 315, 945, 10395; [7] 135135, 10395, 2835, 1575, 1575, 2835, 10395, 135135; [8] 2027025, 135135, 31185, 14175, 11025, 14175, 31185, 135135, 2027025;
Programs
-
Maple
T := (n, k) -> doublefactorial(2*n-1) * binomial(n, k) / binomial(2*n, 2*k): for n from 0 to 8 do seq(T(n, k), k = 0..n) od; # Peter Luschny, Apr 15 2023
-
Mathematica
t[n_, k_] = (2*n - 2*k)!*(2*k)!/(2^n*(n - k)!*k!); Table[Table[t[n, k], {k, 0, n}], {n, 0, 10}]; Flatten[%]
Formula
From Peter Luschny, Apr 15 2023: (Start)
T(n, k) = (1/Pi) * 2^n * Gamma(k + 1/2) * Gamma(n - k + 1/2).
T(n, k) = (2*n-1)!! * binomial(n, k) / binomial(2*n, 2*k). (End)
Extensions
Formula added by the Assoc. Editors of the OEIS, Feb 24 2010