A173444 Either (n-th prime-1)^2-+1, but not both, is prime.
1, 3, 4, 5, 7, 12, 13, 19, 31, 32, 36, 37, 42, 47, 53, 54, 55, 58, 60, 63, 78, 79, 82, 83, 91, 94, 102, 105, 106, 118, 125, 126, 133, 135, 144, 155, 156, 159, 161, 163, 178, 184, 190, 206, 210, 214, 216, 219, 247, 248, 284, 286, 288, 307, 313, 315, 322, 336, 340, 344
Offset: 1
Keywords
Examples
1 is in the sequence because (1st prime-1)^2-1=0 is nonprime and (1st prime-1)^2+1=2 is prime; 3 is in the sequence because (3rd prime-1)^2-1=15 is nonprime and (3rd prime-1)^2+1=17 is prime.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Maple
A005722 := proc(n) (ithprime(n)-1)^2 ; end proc: for n from 1 to 800 do a := A005722(n) ; if isprime(a-1) <> isprime(a+1) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Apr 24 2010
-
Mathematica
ppQ[n_]:=Module[{c=(Prime[n]-1)^2},Sort[PrimeQ[{c+1,c-1}]]== {False, True}]; Select[Range[400],ppQ] (* Harvey P. Dale, Jun 24 2011 *) Select[Range[400],Total[Boole[PrimeQ[(Prime[#]-1)^2+{1,-1}]]]==1&] (* Harvey P. Dale, Feb 01 2023 *)
Extensions
More terms from R. J. Mathar, Apr 24 2010
Definition clarified by Harvey P. Dale, Jun 24 2011
Comments