A173500 Number of sequences of length n with terms from {0,1,...,n-1} such that the sum of terms is 0 modulo n and the i-th term is not i or 2i modulo n.
0, 0, 0, 6, 64, 854, 13392, 244944, 5124266, 120795956, 3169804000, 91666666668, 2897010809280, 99350833566282, 3674884626652666, 145845089585448960, 6182031393612132352, 278750799336055446646, 13322922112485213149376
Offset: 1
Keywords
Examples
For n=4 the a(4)=6 sequences are 0103, 0112, 0301, 3113, 3302 and 3311. - _Robert Israel_, Aug 30 2020
Links
- Robert Israel, Table of n, a(n) for n = 1..200
- Art of Problem Solving forum, 45th IMO Team Selection Test Lincoln, Nebraska.
Crossrefs
Cf. A173499.
Programs
-
Maple
f:= proc(n) local g; g:= proc(i,s) option remember; if i = 0 then if s=0 then return 1 else return 0 fi fi; add(procname(i-1,s-k mod n),k= {$0..n-1} minus {2*i mod n,i}) end proc; g(n,0) end proc: map(f, [$1..30]); # Robert Israel, Aug 30 2020
-
Mathematica
f[n_] := Module[{g}, g[i_, s_] := g[i, s] = With[{}, If[i == 0, If[s == 0, Return@1, Return@0]]; Sum[g[i-1, Mod[s-k, n]], {k, Range[0, n-1] ~Complement~ {Mod[2i, n], i}}]]; g[n, 0]]; Table[f[n], {n, 1, 30}] (* Jean-François Alcover, May 11 2023, after Robert Israel *)
Formula
For prime p, a(p) = (p-1)*((p-2)^(p-1)-1)/p.