A173522 Zero together with the partial sums of A105321.
0, 1, 4, 8, 14, 20, 26, 34, 46, 56, 62, 70, 82, 94, 106, 122, 146, 164, 170, 178, 190, 202, 214, 230, 254, 274, 286, 302, 326, 350, 374, 406, 454, 488, 494, 502, 514, 526, 538, 554, 578, 598, 610, 626, 650, 674, 698, 730, 778, 814, 826, 842, 866, 890, 914, 946
Offset: 0
Keywords
Links
- Shawn A. Broyles, Table of n, a(n) for n = 0..10000
- David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
- T. Pisanski and T. W. Tucker, Growth in Repeated Truncations of Maps, Preprint series, Univ. of Ljubljana, Vol. 38 (2000), 696.
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
Programs
-
Mathematica
f[n_] := f[n] = Sum[ Binomial[1, n - k]Mod[ Binomial[k, j], 2], {k, 0, n}, {j, 0, k}]; g[n_] := Sum[ f@k, {k, 0, n}]; Array[g, 55, 0] (* Robert G. Wilson v, Jun 28 2010 *)
-
PARI
f(n) = sum(k=0, n, binomial(1, n-k)*sum(j=0, k, binomial(k, j) % 2)); a(n) = if (n==0, 0, sum(k=0, n-1, f(k))); \\ or lista(nn) = {print1(s=0, ", "); for (n=0, nn-1, s += f(n); print1(s, ", "););} \\ Michel Marcus, Apr 29 2018
Extensions
More terms from Robert G. Wilson v, Jun 28 2010