cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A173546 Number of 3 X 3 semimagic squares with distinct positive values < n. In a semimagic squares the row and column sums must all be equal (the "magic sum").

Original entry on oeis.org

72, 288, 936, 2592, 5760, 11520, 20952, 35712, 57168, 88272, 131112, 189504, 265752, 365760, 492480, 653040, 851472, 1096416, 1392768, 1751904, 2178864, 2687184, 3283632, 3983760, 4794984, 5736528, 6816456, 8056224, 9466128
Offset: 10

Views

Author

Thomas Zaslavsky, Feb 21 2010

Keywords

Comments

a(n) is given by a quasipolynomial of degree 5 and period 60.

References

  • Matthias Beck and Thomas Zaslavsky, An enumerative geometry for magic and magilatin labellings, Annals of Combinatorics, 10 (2006), no. 4, pages 395-413. MR 2007m:05010. Zbl 1116.05071.

Crossrefs

A173547 counts the same squares by magic sum.

Formula

G.f.: 72 * x^2/(1-x)^2 * { x^5/[(1-x)^3*(1-x^2)] - 2x^5/[(1-x)*(1-x^2)^2] - x^5/[(1-x)^2*(1-x^3)] - 2x^6/[(1-x)*(1-x^2)*(1-x^3)] - x^6/(1-x^2)^3 - x^7/[(1-x^2)^2*(1-x^3)] + x^5/[(1-x)*(1-x^4)] + 2x^5/[(1-x^2)*(1-x^3)] + 2x^6/[(1-x^2)*(1-x^4)] + x^6/(1-x^3)^2 + x^7/[(1-x^2)*(1-x^5)] + x^7/[(1-x^3)*(1-x^4)] + x^8/[(1-x^3)*(1-x^5)] - x^5/(1-x^5) }. - Thomas Zaslavsky, Mar 03 2010

A173725 Number of symmetry classes of 3 X 3 semimagic squares with distinct positive values and magic sum n.

Original entry on oeis.org

1, 2, 4, 8, 12, 20, 29, 42, 54, 82, 97, 131, 169, 207, 249, 331, 372, 459, 551, 647, 745, 911, 1007, 1184, 1374, 1553, 1739, 2049, 2231, 2539, 2867, 3183, 3509, 3999, 4316, 4820, 5340, 5835, 6350, 7104, 7607, 8352, 9132, 9882, 10651, 11724, 12472, 13551
Offset: 15

Views

Author

Thomas Zaslavsky, Feb 23 2010

Keywords

Comments

In a semimagic square the row and column sums must all be equal to the magic sum. The symmetries are permutation of rows and columns and reflection in a diagonal. a(n) is given by a quasipolynomial of degree 4 and period 840.

Examples

			a(15) is the first term because the values 1,...,9 make magic sum 15. By symmetries one can assume a_{11} is smallest, and a_{11} < a_{12} < a_{21} < a_{31} < a_{13}. a(15)=1 because there is only one normal form with values 1,...,9 (equivalent to the classical 3 X 3 magic square). a(16)=2 because the values 1,...,8,10 give two normal forms.
		

References

  • Matthias Beck and Thomas Zaslavsky, An enumerative geometry for magic and magilatin labellings, Annals of Combinatorics, 10 (2006), no. 4, pages 395-413. MR 2007m:05010. Zbl 1116.05071.

Crossrefs

Cf. A173547, A173726. A173723 counts symmetry types by largest cell value.

Formula

G.f.: (x^3)/(1-x^3) * { x^7/[(x-1)*(x^2-1)^3] + 2x^7/[(x-1)*(x^2-1)*(x^4-1)] + x^7/[(x-1)*(x^6-1)] + x^7/[(x^2-1)^2*(x^3-1)] + x^7/[(x^2-1)*(x^5-1)] + x^7/[(x^3-1)*(x^4-1)] + x^7/(x^7-1) + x^9/[(x-1)*(x^4-1)^2] + 2*x^9/[(x^2-1)*(x^3-1)*(x^4-1)] + 2*x^9/[(x^3-1)*(x^6-1)] + x^9/[(x^4-1)*(x^5-1)] + x^11/[(x^3-1)*(x^4-1)^2] + x^11/[(x^3-1)*(x^8-1)] + x^11/[(x^5-1)*(x^6-1)] + x^13/[(x^5-1)*(x^8-1)] }. - Thomas Zaslavsky, Mar 03 2010

A173726 Number of reduced, normalized 3x3 semimagic squares with magic sum n.

Original entry on oeis.org

1, 2, 4, 7, 10, 16, 21, 30, 34, 53, 55, 77, 87, 110, 118, 162, 165, 210, 220, 275, 286, 360, 360, 439, 463, 546, 555, 675, 678, 800, 818, 952, 970, 1132, 1133, 1311, 1341, 1519, 1530, 1764, 1772, 2002, 2028, 2275, 2299, 2592, 2590, 2900, 2939, 3250, 3265, 3644
Offset: 12

Views

Author

Thomas Zaslavsky, Feb 23 2010

Keywords

Comments

In a semimagic square the row and column sums must all equal the magic sum. The symmetries are permutation of rows and columns and reflection in a diagonal. A "reduced" square has least entry 0. There is one normalized square for each symmetry class of reduced squares. See A173725 for a general normal form. a(n) is given by a quasipolynomial of degree 4 and period 840.

Examples

			a(12) is the first term because the values 0,...,8 make magic sum 12. a(12)=1 because there is only one normal form with values 0 to 8: (by rows) 0,4,8;5,6,1;7,2,3. a(13)=2 because the values 0,...,5,7,8,9 give two normal forms: 0,4,9;5,7,1;8,2,3 and 0,4,9;5,7,1;8,2,3.
		

References

  • Matthias Beck and Thomas Zaslavsky, An enumerative geometry for magic and magilatin labellings, Annals of Combinatorics, 10 (2006), no. 4, pages 395-413. MR 2007m:05010. Zbl 1116.05071.

Crossrefs

Cf. A173547, A173725. A173724 counts squares by largest cell value.

A173728 Number of reduced 3 X 3 semimagic squares with magic sum n.

Original entry on oeis.org

72, 144, 288, 504, 720, 1152, 1512, 2160, 2448, 3816, 3960, 5544, 6264, 7920, 8496, 11664, 11880, 15120, 15840, 19800, 20592, 25920, 25920, 31608, 33336, 39312, 39960, 48600, 48816, 57600, 58896, 68544, 69840, 81504, 81576, 94392, 96552
Offset: 12

Views

Author

Thomas Zaslavsky, Mar 03 2010

Keywords

Comments

In a semimagic square the row and column sums must all equal the magic sum. The symmetries are permutation of rows and columns and reflection in a diagonal. A "reduced" square has least entry 0.
a(n) is given by a quasipolynomial of degree 4 and period 840.

References

  • Matthias Beck and Thomas Zaslavsky, An enumerative geometry for magic and magilatin labellings, Annals of Combinatorics, 10 (2006), no. 4, pages 395-413. MR 2007m:05010. Zbl 1116.05071.

Crossrefs

Cf. A173547, A173725, A173726. A173724 counts squares by largest cell value.

Formula

G.f.: 72 * { x^7/[(x-1)*(x^2-1)^3] + 2x^7/[(x-1)*(x^2-1)*(x^4-1)] + x^7/[(x-1)*(x^6-1)] + x^7/[(x^2-1)^2*(x^3-1)] + x^7/[(x^2-1)*(x^5-1)] + x^7/[(x^3-1)*(x^4-1)] + x^7/(x^7-1) + x^9/[(x-1)*(x^4-1)^2] + 2*x^9/[(x^2-1)*(x^3-1)*(x^4-1)] + 2*x^9/[(x^3-1)*(x^6-1)] + x^9/[(x^4-1)*(x^5-1)] + x^11/[(x^3-1)*(x^4-1)^2] + x^11/[(x^3-1)*(x^8-1)] + x^11/[(x^5-1)*(x^6-1)] + x^13/[(x^5-1)*(x^8-1)] }.
Showing 1-4 of 4 results.