cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173670 Last nonzero decimal digit of (10^n)!.

Original entry on oeis.org

1, 8, 4, 2, 8, 6, 4, 8, 6, 4, 2, 8, 6, 6, 6, 6, 8, 2, 6, 8, 8, 2, 4, 2, 2, 8, 2, 6, 2, 6, 4, 4, 6, 6, 4, 2, 8, 2, 6, 4, 6, 4, 2, 4, 4, 2, 8, 8, 4, 4, 2, 6, 6, 4, 4, 8, 8, 4, 6, 2, 2, 4, 4, 2, 4, 6, 2, 4, 4, 4, 2, 2, 6, 8, 6, 6, 4, 2, 2, 4, 4, 2, 8, 8, 2, 6, 2, 6, 2, 2, 6, 2, 2, 8, 6, 2, 2, 4, 6, 6
Offset: 0

Views

Author

Vladimir Reshetnikov, Nov 24 2010

Keywords

Comments

Except for n = 1, a(n) is also the last nonzero digit of (2^n)!. See the third Bomfim link. - Washington Bomfim, Jan 04 2011

Examples

			a(1) = 8, because (10^1)! = 3628800.
		

Crossrefs

Cf. A008904, final nonzero digit of n!.
Cf. A055476, Powers of ten written in base 5.
Cf. A053824, Sum of digits of n written in base 5.

Programs

  • Mathematica
    f[n_] := If[n > 1, Mod[6Times @@ (Rest[FoldList[{ 1 + #1[[1]], #2!2^(#1[[1]]#2)} &, {0, 0}, Reverse[IntegerDigits[n, 5]]]]), 10][[2]], 1]; Table[ f[10^n], {n, 0, 104}] (* Jacob A. Siehler *)
  • PARI
    \\ L is the list of the N digits of 2^n in base 5.
    \\ L[1] = a_0 ,..., L[N] = a_(N-1).
    convert(n)={n=2^n; x=n; N=floor(log(n)/log(5)) + 1;
      L = listcreate(N);
      while(x, n=floor(n/5); r=x-5*n; listput(L, r); x=n;);
      L; N
    };
    print("0 1");print("1 8");for(n=2,1000,print1(n," "); convert(n); q=0;t=0;x=0;forstep(i=N,2,-1,a_i=L[i];q+=a_i;x+=q;t+=a_i*(1-a_i%2););a_i=L[1];t+=a_i*(1-a_i%2);z=(x+t/2)%4;y=2^z;an=6*(y%2)+y*(1-(y%2)); print(an)); \\ Washington Bomfim, Dec 31 2010
    
  • Python
    from functools import reduce
    from sympy.ntheory.factor_ import digits
    def A173670(n): return reduce(lambda x,y:x*y%10,((1,1,2,6,4)[a]*((6,2,4,8)[i*a&3] if i*a else 1) for i, a in enumerate(digits(1<Chai Wah Wu, Dec 07 2023
  • SageMath
    A173670 = lambda n: A008904(10**n)  # D. S. McNeil, Dec 14 2010
    

Formula

From Washington Bomfim, Jan 04 2011: (Start)
a(n) = A008904(10^n).
a(0) = 1, a(1) = 8, if n >= 2, with
2^n represented in base 5 as (a_h, ..., a_1, a_0)_5,
t = Sum_{i = h, h-1, ..., 0} (a_i even),
x = Sum_{i = h, h-1, ..., 1} (Sum_{k = h, h-1, ..., i} (a_i)),
z = (x + t/2) mod 4, and y = 2^z,
a(n) = 6*(y mod 2) + y*(1 -( y mod 2)). (End)

Extensions

Extended by D. S. McNeil, Dec 12 2010