cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A173705 Number of n-colorings of the 26-Fullerene Graph.

Original entry on oeis.org

0, 0, 0, 175392, 52636048080, 236901615304560, 136750498496102880, 22791207032346814320, 1646492374456377504672, 65181439861421995954080, 1639402077308605107361920, 28932563258378720821964160, 384247128673776043122297840, 4041651944711085007033425552
Offset: 0

Views

Author

Alois P. Heinz, Nov 25 2010

Keywords

Comments

The 26-Fullerene Graph has 26 nodes and 39 edges.

Crossrefs

Cf. A173710.

Programs

  • Maple
    a:= n-> n^26 -39*n^25 +741*n^24 -9139*n^23 +82239*n^22 -575334*n^21 +3255381*n^20 -15300714*n^19 +60877534*n^18 -207882246*n^17 +615460527*n^16 -1591600225*n^15 +3614170438*n^14 -7231312797*n^13 +12771014024*n^12 -19910338640*n^11 +27355291779*n^10 -32995251679*n^9 +34709871301*n^8 -31516729541*n^7 +24310852305*n^6 -15545301211*n^5 +7928693334*n^4 -3025373407*n^3 +766360836*n^2 -96255468*n: seq(a(n), n=0..15);

Formula

a(n) = n^26 -39*n^25 + ... (see Maple program).

A159191 Number of n-colorings of the Robertson graph.

Original entry on oeis.org

0, 0, 0, 24, 3490848, 3501104400, 564523119840, 31643453033640, 886834653776064, 15220684846368288, 181298924180884800, 1627952400490177080, 11672280987833510880, 69664869701930893104, 357038627052783076128, 1609181428647593728200, 6498071673405936462720
Offset: 0

Views

Author

Alois P. Heinz, Apr 05 2009

Keywords

Comments

The Robertson graph is the unique (4,5) cage: the quartic graph on 19 vertices (so 38 edges) with girth 5.

Crossrefs

Programs

  • Maple
    a:= n-> n^19 -38*n^18 +703*n^17 -8436*n^16 +73761*n^15 -500004*n^14 +2727105*n^13 -12246808*n^12 +45913333*n^11 -144701057*n^10 +383839223*n^9 -853388854*n^8 +1574465385*n^7 -2370057775*n^6 +2835163369*n^5 -2587310804*n^4 +1685281636*n^3 -693467820*n^2 +134217080*n:
    seq(a(n), n=0..20);

Formula

a(n) = n^19 -38*n^18 + ... (see Maple program).
Showing 1-2 of 2 results.