cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173723 Number of symmetry classes of 3 X 3 semimagic squares with distinct positive values < n.

Original entry on oeis.org

1, 4, 13, 36, 80, 160, 291, 496, 794, 1226, 1821, 2632, 3691, 5080, 6840, 9070, 11826, 15228, 19344, 24332, 30262, 37322, 45606, 55330, 66597, 79674, 94673, 111892, 131474, 153756, 178891, 207278, 239074, 274724, 314427, 358666, 407649, 461936
Offset: 10

Views

Author

Thomas Zaslavsky, Feb 22 2010, Mar 03 2010

Keywords

Comments

In a semimagic square the row and column sums must all be equal (the "magic sum"). Symmetry is up to permutation of rows and columns and reflection in a diagonal. a(n) is given by a quasipolynomial of degree 5 and period 60.

Examples

			For a(10) the cells contain the nine integers from 1 to 9, which can be arranged in 1 way to make a magic square, up to symmetry. For a(11) the cells contain nine of the ten integers from 1 to 10. The omitted number can only be 1, 4, 7, or 10. Each selection of numbers can be arranged in 1 way, up to symmetry.
		

References

  • Matthias Beck and Thomas Zaslavsky, An enumerative geometry for magic and magilatin labellings, Annals of Combinatorics, 10 (2006), no. 4, pages 395-413. MR 2007m:05010. Zbl 1116.05071.

Crossrefs

Cf. A173546, A173724. A173725 counts symmetry types by magic sum.

Formula

G.f.: x^2/(1-x)^2 * { x^5/[(1-x)^3*(1-x^2)] - 2x^5/[(1-x)*(1-x^2)^2] - x^5/[(1-x)^2*(1-x^3)] - 2x^6/[(1-x)*(1-x^2)*(1-x^3)] - x^6/(1-x^2)^3 - x^7/[(1-x^2)^2*(1-x^3)] + x^5/[(1-x)*(1-x^4)] + 2x^5/[(1-x^2)*(1-x^3)] + 2x^6/[(1-x^2)*(1-x^4)] + x^6/(1-x^3)^2 + x^7/[(1-x^2)*(1-x^5)] + x^7/[(1-x^3)*(1-x^4)] + x^8/[(1-x^3)*(1-x^5)] - x^5/(1-x^5) }. - Thomas Zaslavsky, Mar 03 2010