A173725 Number of symmetry classes of 3 X 3 semimagic squares with distinct positive values and magic sum n.
1, 2, 4, 8, 12, 20, 29, 42, 54, 82, 97, 131, 169, 207, 249, 331, 372, 459, 551, 647, 745, 911, 1007, 1184, 1374, 1553, 1739, 2049, 2231, 2539, 2867, 3183, 3509, 3999, 4316, 4820, 5340, 5835, 6350, 7104, 7607, 8352, 9132, 9882, 10651, 11724, 12472, 13551
Offset: 15
Keywords
Examples
a(15) is the first term because the values 1,...,9 make magic sum 15. By symmetries one can assume a_{11} is smallest, and a_{11} < a_{12} < a_{21} < a_{31} < a_{13}. a(15)=1 because there is only one normal form with values 1,...,9 (equivalent to the classical 3 X 3 magic square). a(16)=2 because the values 1,...,8,10 give two normal forms.
References
- Matthias Beck and Thomas Zaslavsky, An enumerative geometry for magic and magilatin labellings, Annals of Combinatorics, 10 (2006), no. 4, pages 395-413. MR 2007m:05010. Zbl 1116.05071.
Links
- Thomas Zaslavsky, Table of n, a(n) for n = 15..10000.
- Matthias Beck and Thomas Zaslavsky, Six Little Squares and How Their Numbers Grow , J. Int. Seq. 13 (2010), 10.6.2.
- Matthias Beck and Thomas Zaslavsky, "Six Little Squares and How their Numbers Grow" Web Site: Maple worksheets and supporting documentation.
- Index entries for linear recurrences with constant coefficients, signature (-2, -3, -2, 0, 3, 6, 8, 9, 7, 3, -4, -10, -15, -16, -14, -8, 0, 8, 14, 16, 15, 10, 4, -3, -7, -9, -8, -6, -3, 0, 2, 3, 2, 1).
Formula
G.f.: (x^3)/(1-x^3) * { x^7/[(x-1)*(x^2-1)^3] + 2x^7/[(x-1)*(x^2-1)*(x^4-1)] + x^7/[(x-1)*(x^6-1)] + x^7/[(x^2-1)^2*(x^3-1)] + x^7/[(x^2-1)*(x^5-1)] + x^7/[(x^3-1)*(x^4-1)] + x^7/(x^7-1) + x^9/[(x-1)*(x^4-1)^2] + 2*x^9/[(x^2-1)*(x^3-1)*(x^4-1)] + 2*x^9/[(x^3-1)*(x^6-1)] + x^9/[(x^4-1)*(x^5-1)] + x^11/[(x^3-1)*(x^4-1)^2] + x^11/[(x^3-1)*(x^8-1)] + x^11/[(x^5-1)*(x^6-1)] + x^13/[(x^5-1)*(x^8-1)] }. - Thomas Zaslavsky, Mar 03 2010
Comments