A173726 Number of reduced, normalized 3x3 semimagic squares with magic sum n.
1, 2, 4, 7, 10, 16, 21, 30, 34, 53, 55, 77, 87, 110, 118, 162, 165, 210, 220, 275, 286, 360, 360, 439, 463, 546, 555, 675, 678, 800, 818, 952, 970, 1132, 1133, 1311, 1341, 1519, 1530, 1764, 1772, 2002, 2028, 2275, 2299, 2592, 2590, 2900, 2939, 3250, 3265, 3644
Offset: 12
Keywords
Examples
a(12) is the first term because the values 0,...,8 make magic sum 12. a(12)=1 because there is only one normal form with values 0 to 8: (by rows) 0,4,8;5,6,1;7,2,3. a(13)=2 because the values 0,...,5,7,8,9 give two normal forms: 0,4,9;5,7,1;8,2,3 and 0,4,9;5,7,1;8,2,3.
References
- Matthias Beck and Thomas Zaslavsky, An enumerative geometry for magic and magilatin labellings, Annals of Combinatorics, 10 (2006), no. 4, pages 395-413. MR 2007m:05010. Zbl 1116.05071.
Links
- Thomas Zaslavsky, Table of n, a(n) for n=12..10000.
- Matthias Beck, Thomas Zaslavsky, Six Little Squares and How Their Numbers Grow , J. Int. Seq. 13 (2010), 10.6.2.
- Matthias Beck and Thomas Zaslavsky, "Six Little Squares and How their Numbers Grow" Web Site: Maple worksheets and supporting documentation.
- Index entries for linear recurrences with constant coefficients, signature (-2, -3, -3, -2, 0, 3, 6, 9, 10, 9, 5, 0, -6, -11, -14, -14, -11, -6, 0, 5, 9, 10, 9, 6, 3, 0, -2, -3, -3, -2, -1).
Comments