A173729 Number of symmetry classes of 3 X 3 magilatin squares with positive values < n.
1, 4, 10, 24, 53, 106, 191, 328, 528, 822, 1230, 1794, 2542, 3534, 4802, 6428, 8460, 10996, 14087, 17870, 22405, 27850, 34286, 41896, 50773, 61148, 73116, 86942, 102751, 120840, 141343, 164618, 190808, 220306, 253292, 290202, 331226, 376872
Offset: 4
Links
- Thomas Zaslavsky, Table of n, a(n) for n = 4..10000.
- Matthias Beck and Thomas Zaslavsky, An enumerative geometry for magic and magilatin labellings, Ann. Combinatorics, 10 (2006), no. 4, 395-413. MR 2007m:05010. Zbl 1116.05071.
- Matthias Beck and Thomas Zaslavsky, Six Little Squares and How Their Numbers Grow , J. Int. Seq. 13 (2010), 10.6.2.
- Matthias Beck and Thomas Zaslavsky, "Six Little Squares and How their Numbers Grow" Web Site: Maple worksheets and supporting documentation.
- Index entries for linear recurrences with constant coefficients, signature (0, 2, 2, 0, -3, -3, -2, 1, 4, 4, 1, -2, -3, -3, 0, 2, 2, 0, -1).
Crossrefs
Programs
-
Mathematica
CoefficientList[Series[x^4*(1 + 4*x + 8*x^2 + 14*x^3 + 25*x^4 + 41*x^5 + 52*x^6 + 54*x^7 + 43*x^8 + 27*x^9 + 13*x^10 + 10*x^11 + 16*x^12 + 23*x^13 + 20*x^14 + 9*x^15)/((1 + x^2)*(1 + x)^3*(1 + x + x^2)^2*(1 + x + x^2 + x^3 + x^4)*(1 - x)^6), {x, 0, 41}], x] (* L. Edson Jeffery, Sep 10 2017 *)
Formula
G.f.: x^2/(1-x)^2 * { x^2/(x-1)^2 - x^3/(x-1)^3 - 2x^3/[(x-1)*(x^2-1)] - x^3/(x^3-1) - 2x^4/[(x-1)^2*(x^2-1)] - x^4/[(x-1)*(x^3-1)] - 2x^4/(x^2-1)^2 + x^5/[(x-1)^3*(x^2-1)] + x^5/[(x-1)^2*(x^3-1)] + 2x^5/[(x-1)*(x^2-1)^2] + x^5/[(x-1)*(x^4-1)] + x^5/[(x^2-1)*(x^3-1)] + x^5/(x^5-1) + 2x^6/[(x-1)*(x^2-1)*(x^3-1)] + 2x^6/[(x^2-1)*(x^4-1)] + x^6/(x^2-1)^3 + x^6/(x^3-1)^2 + x^7/[(x^3-1)*(x^4-1)] + x^7/[(x^2-1)*(x^5-1)] + x^7/[(x^2-1)^2*(x^3-1)] + x^8/[(x^3-1)*(x^5-1)] }.
G.f.: x^4*(1 + 4*x + 8*x^2 + 14*x^3 + 25*x^4 + 41*x^5 + 52*x^6 + 54*x^7 + 43*x^8 + 27*x^9 + 13*x^10 + 10*x^11 + 16*x^12 + 23*x^13 + 20*x^14 + 9*x^15)/((1 + x^2)*(1 + x)^3*(1 + x + x^2)^2*(1 + x + x^2 + x^3 + x^4)*(1 - x)^6). - L. Edson Jeffery, Sep 10 2017
Comments