cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173730 Number of symmetry classes of 3 X 3 magilatin squares with positive values and magic sum n.

Original entry on oeis.org

1, 1, 2, 4, 7, 10, 20, 22, 35, 50, 63, 78, 116, 131, 170, 215, 260, 306, 395, 440, 537, 640, 737, 841, 1025, 1125, 1310, 1507, 1700, 1898, 2213, 2404, 2729, 3071, 3391, 3725, 4242, 4566, 5075, 5612, 6127, 6656, 7418, 7931, 8703, 9499, 10254, 11038, 12140
Offset: 6

Views

Author

Thomas Zaslavsky, Mar 04 2010, Apr 24 2010

Keywords

Comments

A magilatin square has equal row and column sums and no number repeated in any row or column. The symmetries are row and column permutations and diagonal flip.
a(n) is given by a quasipolynomial of degree 4 and period 840.

Crossrefs

Cf. A173549 (all squares), A173548 (counted by upper bound), A173729 (symmetry types by upper bound).

Programs

  • Mathematica
    LinearRecurrence[{-2, -3, -2, 0, 3, 6, 8, 9, 7, 3, -4, -10, -15, -16, -14, -8, 0, 8, 14, 16, 15, 10, 4, -3, -7, -9, -8, -6, -3, 0, 2, 3, 2, 1}, {1, 1, 2, 4, 7, 10, 20, 22, 35, 50, 63, 78, 116, 131, 170, 215, 260, 306, 395, 440, 537, 640, 737, 841, 1025, 1125, 1310, 1507, 1700, 1898, 2213, 2404, 2729, 3071}, 50] (* Jean-François Alcover, Nov 17 2018 *)

Formula

G.f.: x^3/(1-x^3) * ( x^3/((x-1)*(x^2-1)) - 3*x^5/((x-1)*(x^2-1)^2) - 2*x^5/((x-1)*(x^4-1)) - 2*x^5/((x^3-1)*(x^2-1)) - x^5/(x^5-1) + x^7/((x-1)*(x^2-1)^3) + 2*x^7/((x-1)*(x^2-1)*(x^4-1)) + x^7/((x-1)*(x^6-1)) + x^7/((x^2-1)^2*(x^3-1)) + x^7/((x^2-1)*(x^5-1)) - x^7/((x^3-1)*(x^4-1)) + x^7/(x^7-1) + x^9/((x-1)*(x^4-1)^2) + 2*x^9/((x^2-1)*(x^3-1)*(x^4-1)) + 2*x^9/((x^3-1)*(x^6-1)) + x^9/((x^4-1)*(x^5-1)) + x^11/((x^3-1)*(x^4-1)^2) + x^11/((x^3-1)*(x^8-1)) + x^11/((x^5-1)*(x^6-1)) + x^13/((x^5-1)*(x^8-1)) ).