cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173732 a(n) = (A016957(n)/2^A007814(A016957(n)) - 1)/2, with A016957(n) = 6*n+4 and A007814(n) the 2-adic valuation of n.

Original entry on oeis.org

0, 2, 0, 5, 3, 8, 2, 11, 6, 14, 0, 17, 9, 20, 5, 23, 12, 26, 3, 29, 15, 32, 8, 35, 18, 38, 2, 41, 21, 44, 11, 47, 24, 50, 6, 53, 27, 56, 14, 59, 30, 62, 0, 65, 33, 68, 17, 71, 36, 74, 9, 77, 39, 80, 20, 83, 42, 86, 5, 89, 45, 92, 23, 95, 48, 98, 12, 101, 51, 104, 26, 107, 54, 110, 3
Offset: 0

Views

Author

Howard A. Landman, Feb 22 2010

Keywords

Comments

All positive integers eventually reach 1 in the Collatz problem iff all nonnegative integers eventually reach 0 with repeated application of this map, i.e., if for all n, the sequence n, a(n), a(a(n)), a(a(a(n))), ... eventually hits 0.
0 <= a(n) <= (3n+1)/2, with the upper bound being achieved for all odd n.
The positions of the zeros are given by A020988 = (2/3)*(4^n-1). This is because if n = (2/3)*(4^k-1), then m = 2n+1 = (1/3)*(4^(k+1)-1), and 3m+1 = 4^(k+1) is a power of 4. - Howard A. Landman, Mar 14 2010
Subsequence of A025480, a(n) = A025480(3n+1), i.e., A025480 = 0,[0],1,0,[2],1,3,[0],4,2,[5],1,6,[3],7,0,[8],4,9,[2],10,5,[11],1,12,[6],13,3,[14],... with elements of A173732 in brackets. - Paul Tarau, Mar 21 2010
A204418(a(n)) = 1. - Reinhard Zumkeller, Apr 29 2012
Original name: "A compression of the Collatz (or 3x+1) sequence considered as a map from odd numbers to odd numbers." - Michael De Vlieger, Oct 07 2019

Examples

			a(0) = 0 because 2n+1 = 1 (the first odd number), 3*1 + 1 = 4, dividing all powers of 2 out of 4 leaves 1, and (1-1)/2 = 0.
a(1) = 2 because 2n+1 = 3, 3*3 + 1 = 10, dividing all powers of 2 out of 10 leaves 5, and (5-1)/2 = 2.
		

Crossrefs

Programs

  • C
    #include  main() { int k,m,n; for (k = 0; ; k++) { n = 2*k + 1 ; m = 3*n + 1 ; while (!(m & 1)) { m >>= 1 ; } printf("%d,",((m - 1) >> 1)); } }
    
  • Haskell
    a173732 n = a173732_list !! n
    a173732_list = f $ tail a025480_list where f (x :  :  : xs) = x : f xs
    -- Reinhard Zumkeller, Apr 29 2012
    
  • Mathematica
    Array[(#/2^IntegerExponent[#, 2] - 1)/2 &[6 # + 4] &, 75, 0] (* Michael De Vlieger, Oct 06 2019 *)
  • PARI
    odd(n) = n >> valuation(n, 2);
    a(n) = (odd(6*n+4) - 1)/2; \\ Amiram Eldar, Aug 26 2024

Formula

From Amiram Eldar, Aug 26 2024: (Start)
a(n) = (A075677(n+1) - 1)/2.
Sum_{k=1..n} a(k) ~ n^2 / 2. (End)

Extensions

Name changed by Michael De Vlieger, Oct 07 2019