A173824 Number of four-dimensional simplical toric diagrams with hypervolume n.
1, 2, 4, 10, 8, 19, 13, 45, 33, 47, 30, 129, 43, 96, 108, 226, 78, 264, 102, 357, 226, 277, 163, 813, 260, 425, 436, 780, 297, 1092, 355, 1281, 678, 856, 712, 2215, 569, 1155, 1050, 2537, 752, 2544, 856, 2447, 2048, 1944, 1093, 5388, 1447, 3083, 2150, 3827
Offset: 1
Keywords
Links
- J. Davey, A. Hanany and R. K. Seong, Counting Orbifolds, J. High Energ. Phys. (2010) 2010: 10; arXiv:1002.3609 [hep-th], 2010.
- A. Hanany and R. K. Seong, Symmetries of abelian orbifolds, J. High Energ. Phys. (2011) 2011: 27; arXiv:1009.3017 [hep-th], 2010-2011. Table 5 gives a(1)-a(80), but the terms a(36) and a(65) there are apparently erroneous.
- Andrey Zabolotskiy, Coweight lattice A^*_n and lattice simplices, arXiv:2003.10251 [math.CO], 2020.
Crossrefs
Programs
-
Sage
# see Python in A159842 for the definition of dc, fin, per, u, N, N2 def fin_d(d): return fin(*(d.get(n+1, 0) for n in range(max(d)))) def a(n): # see Hanany & Seong 2011, Table 1 row D=5 and Table 9 return (dc(u, N, N2, lambda n: n**3)(n) + 10 * dc(u, u, N, N2, fin(1, -1, 0, 8))(n) + 15 * dc(u, u, N, N, fin_d({1: 1, 2: -3, 4: 14, 8: -12, 16: 16}))(n) + 20 * dc(u, u, N, per(0, 1, -1), fin(1, 0, -1, 0, 0, 0, 0, 0, 9))(n) + 20 * dc(u, u, u, per(0, 1, -1), fin(1, -1, 0, 2), fin(1, 0, -1, 0, 0, 0, 0, 0, 3))(n) + 30 * dc(u, u, u, per(0, 1, 0, -1), fin_d({1: 1, 2: -2, 4: 3, 16: 6, 32: -8, 64: 8}))(n) + 24 * dc(u, per(0, 1, -1, -1, 1), per(0, 1, I, -I, -1), per(0, 1, -I, I, -1))(n)) / 120 print([a(n) for n in range(1, 100)])
Extensions
a(16) corrected, terms a(31) and beyond added from Hanany & Seong 2011 by Andrey Zabolotskiy, Jun 30 2019
a(36) corrected from 2202 to 2215 by Andrey Zabolotskiy, Sep 20 2022
Comments