A173854 Smallest positive integer k such that 2^n + k^2 is a prime number.
1, 1, 1, 3, 1, 3, 3, 3, 1, 3, 3, 9, 9, 9, 7, 15, 1, 15, 3, 9, 5, 21, 5, 3, 11, 57, 7, 21, 9, 33, 3, 27, 9, 15, 5, 39, 25, 3, 35, 57, 25, 9, 15, 33, 39, 99, 27, 3, 25, 63, 67, 9, 105, 51, 145, 33, 9, 3, 15, 57, 15, 243, 13, 111, 9, 15, 3, 81, 71, 21, 5, 21, 19, 33, 57, 81, 141, 51, 17, 33, 125
Offset: 0
Keywords
Examples
2^0 + 1^2 = 2 = A000040(1) => a(0) = k = 1 2^1 + 1^2 = 3 = A000040(2) => a(1) = k = 1 2^2 + 1^2 = 5 = A000040(3) => a(2) = k = 1 2^3 + 3^2 = 17 = A000040(7) => a(3) = k = 3 2^61 + 243^2 = A000040(tbd) => a(61) = k = 243.
References
- Leonard E. Dickson: History of the Theory of numbers, vol. I, Dover Publications 2005
- Louis J. Mordell: Diophantine equations, Academic Press Inc., 1969
- Wolfgang M. Schmidt, Diophantine approximations and Diophantine equations, Lecture Notes in Mathematics vol. 785, Springer-Verlag, 2000
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
Programs
-
Maple
A173854 := proc(n) local twon,k ; twon := 2^n ; for k from 1 do if isprime(twon+k^2) then return k ; end if; end do ; end proc: seq(A173854(n),n=0..90) ; # R. J. Mathar, Mar 05 2010
-
Mathematica
spi[n_]:=Module[{t=2^n,k=1},While[!PrimeQ[t+k^2],k=k+2];k]; Array[spi,90,0] (* Harvey P. Dale, Dec 19 2014 *)
Extensions
Extended by R. J. Mathar, Mar 05 2010
Comments