A173878 Number of six-dimensional simplical toric diagrams with hypervolume n.
1, 3, 7, 23, 19, 65, 46, 202, 156, 281, 183, 972, 333, 903, 1029, 2507, 912
Offset: 1
Links
- Gabriele Balletti, Dataset of "small" lattice polytopes
- J. Davey, A. Hanany and R. K. Seong, Counting Orbifolds, J. High Energ. Phys. (2010) 2010: 10; arXiv:1002.3609 [hep-th], 2010.
- A. Hanany and R. K. Seong, Symmetries of abelian orbifolds, J. High Energ. Phys. (2011) 2011: 27; arXiv:1009.3017 [hep-th], 2010-2011.
- Andrey Zabolotskiy, Coweight lattice A^*_n and lattice simplices, arXiv:2003.10251 [math.CO], 2020.
Crossrefs
Cf. A003051 (No. of two-dimensional triangular toric diagrams of area n), A045790 (No. of three-dimensional tetrahedral toric diagrams of volume n), A173824 (No. of four-dimensional simplical toric diagrams of hypervolume n), A173877 (No. of five-dimensional simplical toric diagrams of hypervolume n).
Extensions
a(8)-a(16) from Balletti's data and a(17) from Table 15 of Hanany & Seong 2011 added by Andrey Zabolotskiy, Mar 13 2020
Comments